Medical Physics Track

Medical physics is a field that applies concepts and methods of physics to medicine. The research focus of the Medical Physics Track in the BME Graduate Program at UT Southwestern is the development of cutting-edge imaging and therapeutic tools to help cancer radiotherapy treatment. For more details, review the Medical Physics Degree Plan.

Specific areas include, but are not limited to:

  • Medical image reconstruction and application in radiotherapy
  • Radiotherapy treatment planning and adaptive replanning
  • Deep learning and Artificial Intelligence for radiotherapy
  • High-performance computing for radiotherapy, such as Monte Carlo radiation transport simulation
  • Modeling of organ motions and development of motion management strategies
  • Development of advanced clinical and preclinical imaging and therapeutic approaches
  • Modeling radiobiological phenomena and understanding the mechanisms

The Student Experience

The Medical Physics track is offered to students who have undergraduate training in physics, engineering, computer science, or related physical sciences who would like to establish a career in medical physics research or clinical service. Students in the medical physics track experience a wide spectrum of training activities to complement their research, including coursework in radiological physics, imaging, anatomy and physiology, seminars, journal clubs, and clinical rotations.

The Medical Physics track is accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), which recognizes that our training has met CAMPEP requirements. This is required for students who would like to establish a career in clinical medical physics. The accreditation allows graduates to apply for CAMPEP-accredited residency training and pursue board certification from the American Board of Radiology.

Accreditation

The Medical Physics track is accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP). CAMPEP can be contacted by email or:

CAMPEP, Inc.
1631 Prince Street
Alexandria, VA 22314
Phone 571-298-1239
Fax 571-298-1301
Send general questions to campep_admin@campep.org

Track Director

Xun Jia, Ph.D.
Xun Jia, Ph.D.

Professor

Research Interests: High-performance computing for radiation therapy and medical imaging; radiation dose calculation; Monte Carlo simulation; 3D/4D Cone beam CT reconstruction; image-guided radiation therapy

Faculty

Dan Nguyen, Ph.D.

Assistant Professor

Research Interests: Radiation therapy treatment planning, optimization techniques and algorithms, artificial intelligence technology development and applications
Dan Nguyen, Ph.D.
Steve Jiang, Ph.D.

Professor

Research Interests: Cloud and GPU-based high-performance computing in medical physics and imaging; automatic radiotherapy treatment planning; adaptive radiotherapy; image-guided radiotherapy; low-dose and dynamic-cone-beam CT

Steve Jiang, Ph.D.
Weiguo Lu, Ph.D.

Associate Professor

Research Interests: Adaptive radiation therapy; treatment-plan optimization; radiation-dose calculations

Weiguo Lu, Ph.D.
Jing Wang, Ph.D.

Associate Professor

Research Interests: Tomographic image reconstruction; cone-beam computed tomography; image-guided radiation therapy; medical imaging processing

Jing Wang, Ph.D
Ken Kang-Hsin Wang, Ph.D.

Associate Professor

Research Interests: Biomedical optics, In Vivo cell tracking, Optical tomography-guided radiation therapy and Ultra-high dose rate irradiation

Ken Wang, Ph.D.
Tao Wang, Ph.D.

Assistant Professor

Research Interests: Bioinformatics, Biostatistics, Machine learning, Immunogenomics, and Tumor genomics

Tao Wang, Ph.D.
Xiaowei Zhan, Ph.D.

Assistant Professor

Research Interests: Statistical genetics and statistical computations  
Xiaowei Zhan, Ph.D.
You Zhang, Ph.D.

Assistant Professor

Research Interests: 3D/4D CT/CBCT reconstruction and analysis, 4D MRI reconstruction, artificial intelligence and automation in radiation therapy, biomechanical modeling and finite element analysis, deformable registration and its application in image-guided radiation therapy, radiotherapy dose calculation and plan optimization

You Zhang, Ph.D.

Associate Faculty

These faculty members do not accept graduate students. They participate in teaching, co-mentoring, exam and dissertation committees, and all other program activities.

Andrew Godley, Ph.D.

Research Interests: Adaptive radiation therapy, MRI-based radiation therapy

Andrew Godley, Ph.D.
Gerald Greil, M.D., Ph.D.

Associate Professor

Research Interests: Evaluate the use of newly designed biodegradable stints to treat pulmonary artery stenosis

Gerald Greil, M.D.
Sandra Hayden, M.A.

Assistant Professor

Research Interests: Quality assurance and student learning in Virtual vs clinical environment. Isocenter localization correlation between Radiation Therapist and Masters education program radiation therapy students. A comparison and agreement study.

Sandra Hayden, M.A
Brian Hrycushko, Ph.D.

Assistant Professor

Research Interests:Tissue-response modeling in radiation therapy; brachytherapy

Brian Hrycushko, Ph.D.
Mustafa Husain, M.D.

Professor

Research Interests: General psychiatry, aging and geriatric issues, new applications of lead placement in ECT and novel treatments of major depressive disorder including magnetic seizure therapy, transcranial magnetic stimulation, deep brain stimulation, and vagus nerve stimulation

Mustafa Husain, M.D.
Paul Medin, Ph.D.

Professor

Research Interests: Tissue-response modeling in radiation therapy; stereotactic radiation therapy

Paul Medin, Ph.D.
Animesh (Aashoo) Tandon, M.D.

Assistant Professor

Research Interests:

Animesh (Aashoo) Tandon, M.D.
Yulong Yan, Ph.D.

Associate Professor

Research Interests: High-performance computing; infrastructure for radiation therapy; radiobiological effects

Yulong Yan, Ph.D.