Cell Biology Faculty and Research

John Abrams, Ph.D.Lab Websitejohn.abrams@utsouthwestern.edu

John Abrams

We explore tumor suppressive mechanisms that restrain mobile elements, examine how chromatin topology controls gene activity and interrogate molecular networks that control cell death.

Maralice Conacci-Sorrell, Ph.D.
Lab Website • maralice.conaccisorrell@utsouthwestern.edu

Maralice Conacci-Sorrell, Ph.D.

Our lab focuses on how cancer cells develop the ability to survive stress conditions such as nutrient deprivation and chemotherapy. We use animal models and molecular biology approaches to identify molecular switches that control stress response and we investigate how cancer cells exploit these switches to develop survival skills.

Beatriz Fontoura, Ph.D.
Lab Websitebeatriz.fontoura@utsouthwestern.edu

Beatriz Fontoura, Ph.D.

Our laboratory studies the cell biology of viral-host interactions. Our main focus is on the interplay between RNA viruses (influenza A viruses, VSV-vesicular stomatitis virus, and SARS-CoV-2) and nuclear processes. We investigate mechanisms of viral interactions with cellular RNA processing and nucleo-cytoplasmic trafficking, which regulate viral replication and antiviral response.

Jonathan Friedman, Ph.D.Lab Websitejonathanr.friedman@utsouthwestern.edu

Jonathan Friedman, Ph.D.

Our lab studies the spatial organization of mitochondria. We are focused on elucidating the molecular mechanisms that govern cristae number and placement along the mitochondrial inner membrane. We are especially interested in how the cell dynamically modulates mitochondrial ultrastructure during shifts in metabolic demand, in different tissues, and under stress conditions.

Frederick Grinnell

My laboratory engages in a multidisciplinary research and teaching program, on one hand doing scientific research and on the other explaining what doing research entails. For many years, we studied the interactions between cells and their extracellular environments to advance the fields of tissue engineering and wound repair. More recently, we began empirical studies aimed at advancing science education.

Natalia Gunko, Ph.D.Electron Microscopy Corenatalia.gunko@utsouthwestern.edu

Natalia Gunko

The Electron Microscopy Core Facility offers TEM of cells and tissues, negative staining, whole-mount SEM, correlative LM and EM, immunogold labeling and sample preparation for vEM.

Judith Head, Ph.D.Distinguished Teaching Professorjudith.head@utsouthwestern.edu

Mike Henne, Ph.D.Lab Websitemike.henne@utsouthwestern.edu

Mike Henne

The Henne lab studies lipid droplets, and how metabolism is spatially organized within cells. We use cell biology, genetics, and biochemistry to deeply understand lipid metabolism and organelle biology.

Lily (Jun-Shen) Huang, Ph.D.
Lab Websitejun-shen.huang@utsouthwestern.edu

Jun-Shen Huang

Our laboratory is interested in the molecular mechanisms governing cytokine receptor signal transduction in hematopoietic stem and progenitor cells, and understanding how deregulation in these mechanisms results in hematological malignancies and cancer.

Wen-Hong Li, Ph.D.
Lab Websitewen.hong.li@utsouthwestern.edu

Wen-Hong Li

My research focuses on islet biology and diabetes. Our long term-goal is to uncover mechanisms and processes that contribute to the maintenance of islet cell fitness and function. Currently we are studying ZnT8 in islet cells aiming to understand how Slc30a8 haploinsufficiency protects type 2 diabetes. We are also developing techniques and probes for monitoring islet beta cell mass or function in vitro and in vivo.

Kate Luby-Phelps, Ph.D. • Electron Microscopy CoreKate.Phelps@UTSouthwestern.edu

Kate Luby-Phelps

The Electron Microscopy Core Facility offers TEM of cells and tissues, negative staining, whole-mount SEM, correlative LM and EM, and immunogold labeling.

Denise Marciano, M.D., Ph.D. • Lab Websitedenise.marciano@utsouthwestern.edu

Denise Marciano

The Marciano lab studies organ formation and regeneration using in vivo and in vitro systems to understand how these processes are regulated at the cellular and molecular level. We are also interested in how genetic disorders of kidney development lead to kidney disease in patients.

Kevin Mark, Ph.D. • Lab WebsiteKevin.Mark@utsouthwestern.edu

Kevin Mark

Our group studies the posttranslational modification of proteins by ubiquitin. While ubiquitin is well known for eliminating aberrant proteins, our research is focused on a new role for this quality control process, namely the regulation of gene expression during development and in disease. Our main goal is to understand how the ubiquitin-proteasome system targets the transcriptional machinery for degradation to facilitate cell fate transitions.

Marcel Mettlen, Ph.D. Quantitative Light Microscopy Coremarcel.mettlen@utsouthwestern.edu

marcel mettlen

The Quantitative Light Microscopy Core (QLMC) addresses your A-to-Z needs related to optical microscopy. Our services include access to state-of-the-art microscopes, customized microscopy training, optimization of imaging settings, advice on sample preparation, help with image quantification and presentation, establishment of fully automated image analysis workflows and basic microscope maintenance.

Peter Michaely, Ph.D.
Lab Websitepeter.michaely@utsouthwestern.edu

Peter Michaely

Our lab studies the role of adaptor proteins on plasma membrane function in the context of endocytosis and cellular signaling.

Saikat Mukhopadhyay, Ph.D.
Lab Websitesaikat.mukhopadhyay@utsouthwestern.edu

Saikat Mukhopadhyay

Our lab studies why cells utilize primary cilia to organize signaling, and how extracellular inputs are spatio-temporally integrated by these compartments. Studying ciliary signaling also provides a more general paradigm for studying cellular sensory networks in regulating developmental pathways, and disease pathologies.

Daniela Nicastro, Ph.D.
Lab Websitedaniela.nicastro@utsouthwestern.edu

Daniela Nicastro

Our lab studies 3D structures and cell biological functions of macromolecular complexes inside cells, such as molecular motors, microtubules in cilia, and cancer-related nuclear proteins.

William Prinz, Ph.D. • Lab Websitewilliam.prinz@utsouthwestern.edu

William Prinz, Ph.D.

Our lab studies organelle biogenesis and intracellular lipid trafficking and homeostasis. There are three related projects in the lab. The first focuses on the biogenesis of lipid droplets and lipoproteins in the ER. The second investigates how specialized domains in the ER facilitate peroxisome biogenesis and function. The third project addresses how membrane contact sites function in intracellular lipid trafficking and metabolism, particularly how they modulate trafficking in response to cellular stresses.

Joachim Seemann, Ph.D.Lab Websitejoachim.seemann@utsouthwestern.edu

Joachim Seemann

We study the molecular mechanisms governing the function and inheritance of complex cellular organelles. In particular, we are investigating how the single Golgi apparatus is partitioned by the spindle machinery in mitosis as well as the regulatory role of the Golgi in organizing polarity during cell migration.

Jerry Shay, Ph.D.
Lab Websitejerry.shay@utsouthwestern.edu

Jerry Shay

The Shay Lab studies the role of telomere biology in aging and cancer, the molecular mechanism of telomere replication and telomerase action, and how to translate these into clinical applications.

Alexandre Toulmay, Ph.D. • Lab Websitealexandre.toulmay@utsouthwestern.edu

Fei Wang, Ph.D. • Lab Websitefei.wang@utsouthwestern.edu

Fei Wang

Our long-term goal is to dissect cell development and differentiation at the molecular level, with a specific focus on organelle and RNA biology. Currently, we are aiming to understand the molecular mechanism of autophagy functions in eukaryotic gametogenesis, the production of sex cells, and more broadly, on how the autophagic machinery rearranges membranes for crucial aspects of development.

Jeffrey Woodruff, Ph.D.Lab Websitejeffrey.woodruff@utsouthwestern.edu

Jeffrey Woodruff, Ph.D.

Our long-term vision is to create a synthetic cell that recapitulates changes in cytoplasmic state in response to fertilization. Additionally, we aim to understand how cell division errors arise that lead to cancer, developmental defects, and age-related infertility.