Simulating Metabolism and 13C Isotopomers

Dean Sherry, PhD
UT Southwestern Medical Center
Email: Dean.Sherry@UTSouthwestern.edu

Summary: A MatLab-based program is presented for predicting 13C NMR spectra and mass 13C isotopomer data of various tissue metabolites in a 13C tracer experiments. The interface shown in Figure 1 allows the operator to select any 13C-labeling pattern for glycerol, lactate, fatty acids or CO$_2$ (for possible labeling via a carboxylation pathway) and to choose relative activities of PDH (pyruvate dehydrogenase), γPC (pyruvate carboxylase), TPI (triose phosphate isomerase), GK (glycerol kinase), and PK (pyruvate kinase). The output provides calculated 13C NMR spectra for all 3-5 carbon TCA cycle intermediates, alanine and lactate, and glucose for those tissues undergoing active gluconeogenesis. The program is useful for predicting changes in 13C multiplet patterns in NMR spectra and changes in mass isotopomer ratios in mass spectral data as a tissue responds to changes in flux of various substrates through completing pathways involving mitochondrial metabolism. The program tcaSIM$_2$ (copies available free of charge) is also valuable for teaching metabolism and analysis of 13C NMR data and mass spec data in metabolic tracer experiments.

Bio: A. Dean Sherry, PhD, is Professor of Chemistry at the University of Texas at Dallas and Professor of Radiology at UT Southwestern Medical Center in Dallas. He holds the Cecil & Ida Green Distinguished Chair in Systems Biology at UT Dallas and serves as Director of the Advanced Imaging Research Center at UT Southwestern.

Publications related to this topic: