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Abstract

In structural proteomics, it is necessary to efficiently screen in a high-
throughput manner for the presence of stable structures in proteins that
can be subjected to subsequent structure determination by X-ray or NMR
spectroscopy. Here we illustrate that the 1H chemical distribution in a
protein as detected by 1H NMR spectroscopy can be used to probe protein
structural stability (e.g., the presence of stable protein structures) of pro-
teins in solution. Based on experimental data obtained on well-structured
proteins and proteins that exist in a molten globule state or a partially
folded �-helical state, a well-defined threshold exists that can be used as a
quantitative benchmark for protein structural stability (e.g., foldedness) in
solution. Additionally, in this chapter we describe a largely automated
strategy for rapid fold validation and structure-based backbone signal
assignment. Our methodology is based on a limited number of NMR
experiments (e.g., HNCA and 3D NOESY-HSQC) and performs a Monte
Carlo–type optimization. The novel feature of the method is the opportu-
nity to screen for structural fragments (e.g., template scanning). The per-
formance of this new validation tool is demonstrated with applications to a
diverse set of proteins.

Introduction

The genome sequencing projects are delivering vast amounts of protein
sequences encoding functionally important proteins, which are putative
protein therapeutics and/or targets for the pharmaceutical industry. The
concept of ‘‘structural proteomics’’ or ‘‘structural genomics’’ [e.g., the
elucidation of the three-dimensional (3D) structures of the encoded pro-
teins] is based on the empirical finding that protein function cannot always
be deduced from the primary sequence but is coded in its 3D shape (Jones
and Thornton, 1997; Kasuya and Thornton, 1999; Russell, 1998; Russel
et al., 1998; Thornton et al., 1991). Beyond that, structural proteomics
efforts will also enlarge the database of known protein structures and
provide a sufficiently large basis set of structures to allow for an efficient
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determination of structure based on homology modeling techniques
(Karplus et al., 1999; Koppensteiner et al., 2000; Ota et al., 1999; Sander
and Schneider, 1991; Sippl and Weitckus, 1992). To date protein structures
are determined either by X-ray crystallography or nuclear magnetic reso-
nance (NMR) spectroscopy. One important issue in large-scale structural
proteomics is target selection or the identification of promising proteins
suitable for determination of structure.

The 1H NMR chemical shifts are governed by the details of the 3D
solution structures of proteins. Although an enormous amount of 1H
experimental data exist that underscores this relationship (Seavey et al.,
1991), 1H chemical shift information was mainly used as a prerequisite
for assignment of relevant structural constraints [e.g., distance-dependent
nuclear Overhauser enhancement (NOE) or dihedral angle constraints]
(Wüthrich, 1986). Here we use the statistics of the 1H chemical shift
distribution to probe protein structural stability in solution. The method
uses the autocorrelation function of the 1H spectra of proteins, which are
easily obtained and do not require isotope labeling of the proteins. We
demonstrate that a significant correlation exists between the autocorrela-
tion function, the topological complexity (expressed as the relative contact
order), and protein structural stability of the protein. Data obtained on a
diverse set of folded proteins with native structures and partially folded
proteins [e.g., the molten globule state of �-lactalbumin (Kuwajima, 1996)
and the partially folded oncogenic transcription factor v-Myc] (Fieber et al.,
2001) demonstrate that the method can be used to efficiently screen for
protein structural stability in a high-throughput manner, with possible
beneficial applications to large-scale structural genomics efforts (Kim,
1998) currently underway in the United States (Terwilliger, 2000), Europe
(Heinemann, 2000), and Japan (Yokoyama et al., 2000). Additionally, the
statistical significance of the observed empirical correlation can also be
used to study tertiary structural features of proteins without the need of
tedious 1H signal assignment. As a first example, the Ca2þ-induced fold
stabilization in �-lactalbumin is discussed. The sensitive dependence of 1H
chemical shift distribution in the low contact order regime (e.g., partially
folded and/or unfolded proteins) also suggests fruitful applications to
protein folding studies.

NMR spectroscopy continues to make significant contributions in the
challenging area of structural genomics (Prestegard et al., 2001; Staunton
et al., 2003), and even high-throughput applications are becoming feasible.
This growing impact is due to recent advances in protein preparations,
spectrometer hardware, data analysis, and pulse sequence developments.
One of the most time-consuming bottlenecks in the process of structure
elucidation by NMR is the signal assignment of backbone and side chain
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1H, 13C, and 15N resonances, which is a prerequisite for the subsequent
gathering of information about protein structure, dynamics, and intermo-
lecular interactions from NMR spectra. Ongoing progress in the develop-
ment of more powerful spectrometer equipment and pulse sequences has
been accompanied by increasing efforts to partly or fully automate the
signal assignment procedure. In recent years, numerous research groups
reported the development of assignment programs or software packages. A
detailed description of these methods is beyond the scope of this chapter.
Instead, we refer to an exhaustive review by Gronwald and Kalbitzer
(2004) and references therein. The signal assignment process can be sub-
divided into several steps: (1) grouping of resonances from one or more
spectra to spin systems, (2) association of spin systems with amino acid
types, (3) linking of spin systems to shorter or longer fragments, and (4)
mapping of fragments to the primary sequence. Although some of the
reported programs concentrate on one of these steps, others tackle several
steps at once. The underlying tools and procedures to accomplish these
tasks include tree search algorithms, best-first deterministic approaches,
exhaustive searches, genetic algorithms, threshold accepting, Monte Carlo
simulations coupled with energy minimization algorithms, neural networks,
and others. Most of the programs, in particular those for assignment of
larger proteins, rely on a specific set of (numerous) two-dimensional (2D)
and 3D NMR spectra or a considerable minimum amount of NMR data to
produce reliable results. Therefore, assignment programs are often quite
demanding in terms of spectrometer time necessary to acquire sufficient
input data. In addition, existing assignment programs are sensitive to
missing or incorrect input data (resulting from signal overlap, relaxation
processes, noise, and artifacts) and fail to find the correct assignment under
nonideal conditions.

In this chapter, we present a new tool for structure-based signal assign-
ment and protein fold validation. It requires minimal NMR data input and
the existence of a structure homologue. Although it is reminiscent of
existing NMR software packages (Hitchens et al., 2003), it is novel as it
also allows for screening for structural fragments (e.g., template scanning).
Materials and Methods

Fold Stability Analysis

The following protein samples were used in this study: �-lactalbumin
(Acharya et al., 1991), lysozyme (Diamond, 1974), MutS (Tollinger et al.,
1998), creatine kinase (Rao et al., 1998), ubiquitin (Vijay-Kumar et al., 1987),
bovine pancreatic trypsin inhibitor (BPTI) (Parkin et al., 1996), myoglobin
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(Maurus et al., 1998), v-Myc (Fieber et al., 2001), and bovine serum albumin
(BSA) (Janatova et al., 1968). Lysozyme, �-lactalbumin, creatine kinase,
BPTI, myoglobin, and BSA were purchased from Sigma (St. Louis, MO)
and used without further purification, while v-Myc (Fieber et al., 2001) and
MutS (Tollinger et al., 1998) were prepared as described previously. Ca2þ-
depleted �-lactalbumin was prepared by overnight dialysis using a buffer at
pH 1.5 and subsequently refolded by adjusting the pH to 6.5. The molten
globule state of �-lactalbumin was prepared by adjusting the pH of the
protein solution to 2.5. The pH of the protein solution was carefully
controlled with a pH meter. All NMR experiments were performed on a
Varian UNITYPlus 500-MHz spectrometer equipped with a pulse field
gradient unit and a triple resonance probe with actively shielded z gradi-
ents. All spectra were recorded at 26�. Water suppression was achieved
with a presaturation and WATERGATE detection scheme. For the
13C,15N-labeled proteins ubiquitin and MutS the first trace [omitting the
nuclear Overhauser enhancement spectroscopy (NOESY) mixing period
and with 13C, 15N-decoupling during acquisition] of a 13C,15N-NOESY-
hetero nuclear single-quantum correlation (HSQC) (Pascal et al., 1994)
spectrum was used.

In contrast to the previously published application of random matrix
theory to the statistical analysis of protein 1H chemical shifts (Lacelle,
1984), the applied statistical analysis used the autocorrelation function of
protein one-dimensional (1D) 1H spectra. NMR spectra were processed and
analyzed using NMRPipe (Delaglio et al., 1995) software. Acquisition para-
meters were as follows: spectral width, 12,000 Hz; number of spectral
points, 11,392 for 1D 1H spectra and 1536 for spectra acquired using a
13C,15N-NOESY-HSQC, respectively; zero filling, 24 K. However, we have
demonstrated that the exact number of spectral points does not influence
the outcome of the statistical analysis (data not shown). Residual water was
eliminated by deleting the spectral region 4.90–4.55 ppm. To eliminate
possible errors introduced by the elimination of the spectral region around
the water resonance, the autocorrelation function was calculated for several
spectra in which different spectral regions (around the water resonance
frequency) were eliminated. No changes in the autocorrelation function
C(!) were observed. Intensities were extracted from the 1D 1H spectra with
a perl script using the function nLinLS provided with NMRPipe (Delaglio
et al., 1995) (and calculated as integrals over 10 data points). The 1H
spectrum for the theoretical random coil peptide was calculated using the
sequence of �-lactalbumin and the published random coil shifts for short
peptides (Wishart et al., 1995). Shifts for each proton were additionally
randomized within �0.02 ppm. The resulting data files were used to calcu-
late the autocorrelation functions. The obtained autocorrelation functions,
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C(!), were normalized to the value at the smallest available frequency
difference (0.01 ppm). The raw data were incorporated into the program
package xmgr and numerically averaged (averaging window, 50 data
points). The values of the autocorrelation function at frequency 0.5 ppm,
C(0.5) were used as measures of protein structural stability.

Contact orders were determined from structural coordinates in the
Protein Data Bank (Berman et al., 2000). Relative contact orders were
calculated according to the published procedure by Baker and co-workers
(Plaxco et al., 1998) (see also http://depts.washington.edu/bakerpg). The
contact order for the partially folded v-Myc protein was calculated based
on the solution structure, which revealed an �-helical conformation for the
leucine zipper region comprising residues 384–411 (Fieber et al., 2001). The
unfolded segments of v-Myc were taken as random coils and thus neglected
for the calculation of the relative contact order.
Fold Validation

Cross-peaks are automatically picked in the HNCA and 15N-NOESY-
HSQC (Cavanagh et al., 1996) spectra employing Nmrview software
(Johnson and Blevins, 1994). The peak picking in the 15N-NOESY-HSQC
is restricted to the HN–HN NOEs in the 1H spectral window from 6 to 12
ppm. Artifacts and noise peaks are deleted manually. In addition, an in-
house written software tool is used to filter out cross-peaks arising from
J-coupled asparagine and glutamine side chain amide resonances.

HNCA cross-peaks are then grouped into individual spin systems (i),
with (i) being an arbitrary reference number. Cross-peaks that are sepa-
rated by less than the digital resolution (�0.2 ppm in the 15N dimension
and less than �0.02 ppm in the direct 1H dimension) are assumed to belong
to the same spin system. The more intense cross-peak is assigned to the
C�(i) nucleus, whereas the less intense signal is attributed to the C�(i � 1)
nucleus. The observation of more than two aligned cross-peaks is indicative
for overlapping residues with degenerate 1H and 15N backbone amide
frequencies. In these cases C�(i) and C�(i � 1) resonances cannot be
distinguished and hence these chemical shifts are not included in the input
shift table. If only one (1H, 15N, 13C) correlation is observed within bound-
aries of digital resolution, the C�(i � 1) chemical shift is assumed to
coincide with the C�(i) chemical shift. The collection of a supplementary
HN(CO)CA (Cavanagh et al., 1996) dataset is recommended to obtain a
complete and correct input shift list with clear discrimination of C�(i) and
C�(i � 1) resonances.

The arbitrary reference numbers attributed to spin systems detected
in the HNCA experiment are transferred to residues observed in the

http://depts.washington.edu/bakerpg


[6] protein structural stability via NMR 147
15N-NOESY-HSQC spectrum and a list including all potential HN–HN

NOEs is generated. The identification of the dipolar coupling partner of
a specific HN–HN NOE (preliminary assignment in F2) is achieved in the
following fully automated manner: (1) It is checked for each individual
HN–HN NOE arising from dipolar interaction between residues i and j and
with chemical shift coordinates (1Hi/

1Hj/
15Ni) whether a symmetric NOE

exists at the position (1Hj � 0.03/1Hi � 0.03/15Nj). If only one symmetric
NOE partner is found in the NOE list, the residue j is in all likelihood the
dipolar coupling partner of residue i. (2) If multiple symmetric NOEs are
found, no clear assignment is feasible in the indirect dimension F2; all
residues giving rise to the symmetric NOE represent potential dipolar coup-
ling partners. The intensity of the symmetric NOE ( j/i) with respect to the
NOE (i/j) is neglected in this analysis for the sake of simplicity. The NOE
(i/j) is then duplicated according to the number of potential coupling
partners j, whose preliminary reference numbers are assigned to the F2
dimension of each of these duplicated NOEs. Although, with this proce-
dure, wrong NOEs are included in the NOE input list, at least one of
the ‘‘cloned’’ NOEs will have the correct assignment. (3) If for a speci-
fic NOE at the position (1Hi/

1Hj/
15Ni) no symmetric NOE (1Hj/

1Hi/
15Nj ) is

found, potential coupling partners can be unraveled by inspecting the 1HN

chemical shifts of all experimentally observed amino acids. The NOE (i/j)
is again multiplied in the NOE input list according to the number of
residues j having an HN chemical shift of 1Hj � 0.03 ppm and the reference
numbers of these residues are assigned to the F2 dimension of the NOE
(i/j). (4) If no potential dipolar coupling partner is found in steps (1) to (3)
(i.e., NOE between a backbone amide proton and an aromatic side chain
proton), the NOE (i/j) is omitted from the HN–HN NOE input list.

As a result of this procedure, two input files are obtained. The first one
contains all experimentally observed residues with their arbitrary reference
numbers as well as their backbone C�(i) and C�(i � 1) chemical shifts. The
second input file lists all potential HN–HN NOEs that are observed among
the query protein residues.
Prediction of Query Protein Chemical Shifts and NOEs

Chemical shifts of the homology model were either obtained by taking
chemical shift values deposited in the BMRB database (Doreleijers et al.,
2003) or by shift prediction employing ShiftX software (Neal et al., 2003)
(see Table II). Homology model secondary chemical shifts are calculated
by subtracting random coil shifts from H, N, and C� chemical shifts. These
secondary shifts are subsequently added sequence specifically to the query
protein random coil shifts according to the sequence alignment between



148 proteomics [6]
homology model and query protein. This yields chemical shift predictions
for the query protein. Query protein HN–HN NOEs are predicted by
computing all pairs of backbone amide protons with distances shorter than
5 Å from the homology model atom coordinates.

Monte Carlo Simulation

The Monte Carlo simulation (Metropolis et al., 1953) attempts to find
the best global mapping of experimentally observed spin systems onto the
query protein primary sequence. A start configuration is generated by
randomly assigning experimentally observed residues to residue positions
in the primary sequence. The program is able to handle unoccupied se-
quence positions that occur when the number of experimentally observed
residues is smaller than the total number of query protein residues. Multi-
ple random changes are generated by choosing two query protein sequence
positions A and B and by exchanging the experimentally observed residues
characterized by their chemical shift values and HN–HN NOEs between
both positions. After each Monte Carlo step the objective function E
(analog of energy) is evaluated with respect to its value before the rear-
rangement. The random change proposed to the system is accepted or
rejected according to the Metropolis criterion, i.e., if E2 � E1, the step is
necessarily accepted; if E2 > E1, the step is accepted with the probability of
p ¼ exp(E1 � E2)/kT, with k ¼ 1. The start temperature T is set to a value
that is considerably larger than the largest �E normally encountered. The
temperature is held constant for several thousand Monte Carlo steps and is
then lowered in multiplicative steps, each amounting to a 1–5% decrease in
T with respect to the previous temperature value. When T has reached a
value where further efforts to reduce the objective function E become
inconclusive, the first cycle of the Monte Carlo simulation is stopped. The
uniqueness of assignment is assessed by running 10–20 independent Monte
Carlo assignment cycles.

In our approach the objective function E is defined as E ¼ �log P, with
P being an overall probability scoring value:

P ¼ TAN � expð�f1 � �RMSD1Þ � expð�f2 � �RMSD2Þ � CA (1)

The Tanimoto coefficient TAN is a measure of the number of experi-
mentally observed NOEs that coincide with predicted NOEs for a given
tentative assignment. It is defined as c � w/(a þ b � c), where a and b are the
number of experimentally observed and predicted NOEs, respectively,
and c is the number of matching NOEs in both input lists A and B.
The weighing factor w ¼ b/a ensures that TAN can reach its maximum
value of 1 even if a does not equal b. Although the Tanimoto coefficient
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forces the system into configurations with a maximum number of coin-
ciding experimental and predicted HN–HN NOEs, the second term
exp(�f1 � øRMSD1) with

�RMSD1 ¼
X

ð�C�2
l;k þ�C�2

i�1;k�1 þ�C�2
j;i þ�C�2

j�1;l�1Þ
n o1=2

=c (2)

ensures that the average root mean square deviation (RMSD) of the four
query protein C� chemical shifts C�i, C�i�1, C�j, and C�j�1 and the
corresponding predicted shifts C�k, C�k�1, C�l, and C�l�1 is minimized
for all c coinciding pairs of experimental and predicted NOEs, with i /j and
k/l being dipolar-coupled partners in the query protein and homology
model, respectively. Query protein residues whose HN–HN NOEs do not
coincide with predicted NOEs at a specific Monte Carlo step or with no
detectable HN–HN NOEs do not contribute to the term øRMSD1. To
account for these residues, the third factor exp(�f2 � øRMSD2) with

�RMSD2 ¼
X

ð�C�2
m;n þ�C�2

m�1;n�1Þ
n o1=2

=z (3)

is introduced into the probability scoring function [Eq. (1)]. This term is a
measure for the overall matching of experimental shifts C�m and C�m�1

with the corresponding predicted shifts C�n and C�n�1 in a specific config-
uration. The expression øRMSD2 forces the z experimentally observed
spin systems to move toward configurations with an overall good match
of experimental and predicted C� chemical shifts. The factors f1 and f2 in
Eq. (1) represent empirically determined weighing factors and were set to
f1 ¼ f2 in our test runs. The factor CA in Eq. (1) represents the percentage
of residues whose C�i�1 chemical shifts match the C�l shifts of the prede-
cessor within a user-defined tolerance value (0.15 ppm). If the total num-
ber of experimentally observed residues is smaller than the number of
residues in the query protein sequence, a constant number of residue
positions remain ‘‘unoccupied’’ throughout the Monte Carlo simulation.
Spin systems with no predecessor or successor are treated as adjacent
residues with matching sequential C� chemical shifts.

Our assignment and structure validation software is written in the
programming language ‘‘C.’’ The program is streamlined with respect to
CPU time requirements. This is achieved by avoiding noninteger arithme-
tic and by outsourcing the most time-consuming computational steps from
the actual Monte Carlo/simulated annealing procedure. To this end, look-
up values contributing to the øRMSD1, øRMSD2, and CA terms of the
probability scoring function [Eq. (1)] are computed in advance for all
combinations of scalar- and/or dipolar-coupled residue pairs that may be
encountered at any of the query protein sequence positions in the course of
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the subsequent Monte Carlo run. In addition to these measures, after
each Monte Carlo step, the scoring function is not evaluated from scratch,
i.e., by summing up the contributions of all residues in that particular
tentative assignment. Instead, only changes induced by those residues
subjected to the random change are calculated. Our test calculations were
executed on a Pentium-grade Linux PC performing �30,000 Monte Carlo
steps per second. The required CPU time for 20 independent assignment
runs ranges from �30 min for medium sized proteins (�150 residues) to
2 h for MBP.
Results

Fold Stability

An outline of the method for rapid assessment of protein stability is
illustrated in Fig. 1. The starting point is a conventional protein 1H 1D
spectrum in which the residual water is eliminated by simply deleting the
spectral region 4.90–4.55 ppm. This data file is used to calculate the auto-
correlation function C(!). The autocorrelation function is the Fourier
transform (FT) of the product between the free induction decay (FID)
and its complex conjugate and is thus related to the distribution function of
the frequency and relaxation rate differences, respectively. It is important
to realize that the lack of specific long-range contacts in unfolded states
compared to well-structured proteins leads to a significant narrowing of the
distribution function. The obtained autocorrelation functions C(!) are
normalized to the value at the smallest available frequency difference
(0.01 ppm) and numerically smoothed. In Fig. 2 typical (smoothed) auto-
correlation functions C(!) are shown. From inspection of Fig. 2, it is
obvious that there is a clear distinction between a well-folded protein with
pronounced structural stability and partially folded or unfolded states. The
�-lactalbumin molten globule state at pH 2.5 was chosen as an example of a
partially folded state (Fig. 2, blue line), and the dashed black line indicates
a theoretical autocorrelation function C(!) assuming 1H random coil shifts
for the protons of �-lactalbumin. We have found that the primary sequence
of the protein does not significantly influence C(!); thus the random coil
data presented in Fig. 2 can be regarded as representative for a completely
unfolded protein in solution. It is evident from Fig. 2 that partially folded
proteins as evidenced by the �-lactalbumin molten globule at pH 2.5 or
v-Myc (Fieber et al., 2001) are remarkably different from native proteins
and display a significant reduction of the autocorrelation function C(!).

A closer inspection of Fig. 2 reveals that although the overall appear-
ances of the various C(!) for folded proteins (Fig. 2, black, red, and green



Fig. 1. Outline of the statistical analysis. The starting point of the method is the

experimental protein 1D 1H spectra (consisting typically of 2400 data points or 0.01 spectral

resolution), in which a residual water signal is eliminated by discarding the spectral region

between 4.55 and 4.90 ppm. The obtained autocorrelation function, C(!), is normalized to the

value at the smallest available energy difference (0.01 ppm), numerically smoothed (typically

by averaging over 50 data points). The value of the autocorrelation function at a frequency

difference of 0.5 ppm, C(0.5), is taken as a measure for cooperative structural properties of the

proteins and can be used as a quantitative measure of protein structural stability.
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lines) are remarkably similar, there are noticeable differences. Specifically,
the slight additional maxima for C(!) at larger frequencies (around 6 ppm)
suggest the possibility to extract structural features of proteins from the
autocorrelation function, which is reminiscent of CD spectroscopy. It is
interesting to note that the �-lactalbumin molten globule (Fig. 2, blue line)
displays this slight additional maximum in the autocorrelation function
C(!), suggesting that the partly folded molten globule state comprises
polypeptide fragments with extended chain conformations. We have made



Fig. 2. Autocorrelation functions of protein 1D 1H spectra. The following proteins

are shown: lysozyme (black), BSA (red), ubiquitin (green), the molten globule state of

�-lactalbumin (blue), the partially folded protein v-Myc (blue, dashed line), and a theoretical

random coil polypeptide assuming random coil 1H chemical shifts (black, dashed line). Only

energy difference data with �! > 0.25 ppm are shown (see text).
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similar observations (e.g., additional maxima at larger frequencies) for the
�-catenin binding fragment of the T-cell factor-4 (TCF4) for which an
extended conformation (in additional to a C-terminal �-helix) was ob-
served in the crystal structure. CD spectroscopy of apo-TCF4, however,
indicated a random coil in solution. Preliminary NMR data obtained for
13C,15N-labeled apo-TCF4 also provided evidence for the prevalence of
extended local structure elements in solution (data not shown). It thus may
be feasible to study partially folded protein states by means of the pro-
posed autocorrelation function analysis. For a completely unfolded state,
however (Fig. 2, dashed black line), no additional maxima are observed,
which again results from the significantly reduced dispersion observed in
1D 1H spectra of unfolded proteins (Wishart et al., 1995).

To derive an unbiased measure for protein structural stability in solu-
tion and given the fact that the autocorrelation function is unknown, we
propose the autocorrelation function value C(!) at 0.5 ppm, C(0.5), as a
benchmark of fold stability. Although we have also tested alternative
measures such as information theory, methods of moments, and nonlinear
curve-fitting, we prefer to use the C(0.5) value, partly because the C(0.5)
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value can be related to the heterogeneity of the individual protein 1H
resonances. Table I lists C(0.5) values obtained for the various proteins.
It can be seen that there is a significant difference between proteins that
exhibit a well-defined solution structure (e.g., lysozyme, myoglobin, ubi-
quitin, creatine kinase, MutS) and proteins that exist in partly folded states
(e.g., the �-lactalbumin molten globule at pH 2.5, the oncogenic transcrip-
tion factor v-Myc). Whereas natively folded proteins display C(0.5) values
>0.5, partially folded or unfolded proteins have values of <0.4. A C(0.5)
threshold value of 0.4–0.5 thus significantly discriminates between these
two regimes.

We then explored whether there is a quantifiable relationship between
the native state topology of a protein and the statistics of the 1H chemical
shift distribution obtained from the autocorrelation analysis of protein 1D
1H spectra. The topological complexity was specified numerically accord-
ing to a procedure proposed by Plaxco et al. (1998). We have used the
relative contact order, which reflects the relative importance of local and
nonlocal residue contacts to the global fold of a protein. The relative
contact order, CO, can be interpreted as the average primary sequence
TABLE I

Statistical Analysis of Protein
1H Chemical Shift Distributions

a

Protein (PDB code) C(0.5) CO (%)

Lysozyme (6LYZ) 0.58 11.1

Creatine kinase (2CRK) 0.54 7.5

�-Lactalbumin (1A4V) 0.62 9.7

BPTI (1BPI) 0.60 15.9

Myoglobin (1AZI) 0.72 7.9

MutS (1BE1) 0.57 9.1

Ubiquitin (1UBQ) 0.65 14.9

BSA 0.66 —b

v-Myc 0.28 2.0c

�-Lactalbumin molten globule 0.34 —b

Ubiquitin in 10 M urea 0.32 —b

Random coil 0.14 —b

a The decay of the autocorrelation function C(!) is described by its

value at a frequency difference of 0.5 ppm (see Materials and

Methods). The relative contact order (Plaxco et al., 1998) (CO) is

taken as a measure of the topological complexity of proteins.
b No structure/contact order available.
c Calculated based on the solution structure of v-Myc (Fieber et al.,

2001). Only the C-terminal �-helix comprising residues 384–411

were considered.



154 proteomics [6]
distance between all pairs of contacting residues along the polypeptide
chain (normalized by the total number of residues in the protein).
Figure 3 shows the relationship between the topological complexity of the
proteins (described by the relative contact order) and the 1H chemical shift
distribution described by the C(0.5) value. For example, proteins with
compact 3D structures (large relative contact order) display C(0.5) values
between about 0.54 and 0.72, respectively. From Fig. 3 it can be seen that
the C(0.5) values for the various natively folded proteins are below 0.75, the
only exception being myoglobin, which has an attached heme moiety and
is thus different compared to the other unligated proteins. Additionally,
in the 1D 1H spectra of myoglobin, signals from the bound heme moiety
Fig. 3. The relationship between the statistics of protein 1H chemical shifts and protein

topology. The autocorrelation function C(!) (Fig. 2) was approximated by its value at a

frequency of 0.5 ppm, C(0.5). The correlation between the relative contact order of proteins

and C(0.5) defines a criterion for the identification of a folded protein. Black symbols depict

experimental values; the gray circle denotes the calculated value for a random coil peptide;

and the dotted horizontal lines indicate experimental C(0.5) values for the �-lactalbumin

molten globule (pH 2.5) and ubiquitin denatured in 10 M urea. For these conformationally

flexible proteins no contact order could be calculated. Proteins with C(0.5) > 0.5 exhibit a

well-defined global fold and exist in a well-structured form in solution. The solid line

represents a fit to the experimental data using the analytical function C(0.5) ¼ A0 þ A1[1 �
exp(�A1 � CO)].
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are not suppressed and thus contribute to the observed 1H autocorrelation
function. The relationship C(0.5) vs. relative contact order, CO (Fig. 3),
presumably reflects the common folding principles of proteins that are
based on the chemical similarities of the amino acid building blocks. It
also indicates the existence of a threshold value for C(0.5). Most likely, this
reflects the upper limit of structural or topological complexity in proteins,
which is due to the avoidance of steric clashes of amino acid side chains
upon contraction of the polypeptide chain. A detailed understanding of the
true relationship between the correlation of energy levels in proteins, as
reflected in C(!), and the topological complexity of proteins (relative
contact order) will provide some (qualitative) insight into the cooperativity
of protein structures but is beyond the scope (and not of particular
relevance to the proposed applications) of this chapter.

Partially folded proteins or proteins with molten globule-like behavior,
however, display significantly smaller C(0.5) values (<0.4). The larger
C(0.5) value (0.34) observed for the �-lactalbumin molten globule com-
pared to the partially folded oncogenic transcription factor v-Myc (0.28)
suggests more cooperative long-range interactions in this dynamic protein
state. Indeed, there is evidence that the molten globule of �-lactalbumin
has a native-like overall fold with weak but reasonably well-defined tertiary
interactions (Alexandrescu et al., 1993; Baum et al., 1989; Chakraborty
et al., 2001; Chyan et al., 1993; Dobson, 1994; Peng and Kim, 1994; Peng
et al., 1995; Redfield et al., 1999; Wu et al., 1995). In contrast, v-Myc exists
as a partially folded protein displaying a well-defined C-terminal �-helix
and a ‘‘nascent’’ helix in the N-terminal basic domain with no evidence for
significant long-range order (Fieber et al., 2001).

It is also illuminating to compare our findings on the molten globule
state of �-lactalbumin with data obtained using NMR spin diffusion as a
probe for protein compactness and residual structure in molten globule
states (Griko and Kutyshenko, 1994; Kutyshenko and Cortijo, 2000). The
rigidity parameter (G) was introduced as a measure for residual structure
in proteins subjected to denaturing conditions, such as temperature, dena-
turing agents, and changes in pH. G is defined as the intensity ratio
between conventional 1D 1H spectra and spin diffusion spectra for certain
spectral regions of proteins (e.g., amide, aromatic, and or aliphatic).
G values of �0.1 were obtained for denatured (unfolded) proteins, whereas
values of �0.5 have been found for native and, surprisingly, molten globule
states (Griko and Kutyshenko, 1994; Kutyshenko and Cortijo, 2000). This
was suggestive of the existence of native-like tertiary structures in molten
globules. NOEs and other data also supported the notion that molten
globules exist in significantly compact structural ensembles (Balbach et al.,
1997; Choy et al., 2001). However, the fact that a native-like spectral
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appearance is observed does not imply that a molten globule exists as a
compact, impermeable sphere (Griko and Kutyshenko, 1994; Kutyshenko
and Cortijo, 2000). Our finding that the �-lactalbumin molten globule is
significantly less compact and less ordered than well-structured native
proteins emphasizes the notion that a molten globule is best described as
a native-like but noncooperative assembly of the constituent core regions
of the polypeptide chain (Schulman and Kim, 1996; Schulman et al., 1997).
The lack of cooperativity in molten globules is observed as a significantly
faster decay of the autocorrelation function, described with C(0.5), com-
pared to native proteins (see Fig. 2), which exist as densely packed poly-
peptide chains of a highly cooperative nature. Interestingly, our findings
are also consistent with recent NMR experiments that also demonstrated a
noncooperative unfolding of the �-lactalbumin molten globule by prob-
ing unfolding events at individual residues (Schulman and Kim, 1996;
Schulman et al., 1997). Finally, the dynamic nature of the transiently
formed structural ensemble of a molten globule is indicated by effective
transverse spin relaxation (e.g., extreme line-broadening due to motional
dynamics in the millisecond to microsecond time scale), which typically
precludes direct NMR studies of molten globules (Last et al., 2001).

Interestingly, ubiquitin denatured in 10 M urea displays a C(0.5) value
of 0.32 similar to the values of the molten globule of �-lactalbumin and
v-Myc. The observation of small C(0.5) values is consistent with the notion
that the auto correlation function predominantly probes cooperative long-
range interactions in well-defined protein folds. It also suggests, however,
that urea-denatured ubiquitin exhibits some residual structure. Similar
observations (e.g., the prevalence of residual structure in denatured pro-
teins) have been made for the denatured forms of 434-repressor (Neri et al.,
1992) and the fragment �131� of staphylococcal nuclease (Shortle and
Ackerman, 2001).

Encouraged by the quality of the data, we investigated the possibility of
using this analysis to probe protein stability in general and to determine
whether the accuracy of the method is sufficiently high to monitor subtle
changes of protein structural stability (foldedness) upon, for example,
ligand binding. As a first example, we present data obtained on monitoring
stability changes of �-lactalbumin upon Ca2þ binding. �-Lactalbumin is the
regulatory component of the lactose synthase complex that catalyzes the
biosynthesis of lactose. It has a bipartite structure and consists of two lobes.
The �-domain is composed of four �-helices (and two short 310 helices),
whereas the smaller �-domain consists of a triple-stranded antiparallel
�-sheet and a 310 helix, linked by a series of loops (Acharya et al., 1991;
Calderone et al., 1996; Pike et al., 1996). All known �-lactalbumin crystal
structures revealed a conserved Ca2þ-binding site, formed by the side chain
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�-carboxylate groups of three aspartic acid residues, two backbone carbonyl
oxygens, and two bound water molecules (contributing two oxygens to the
metal coordination site), which are arranged in a distorted pentagonal
bipyramidal coordination sphere (Acharya et al., 1991; Anderson et al.,
1997; Calderone et al., 1996; Pike et al., 1996). The apparent KCa of �-
lactalbumin (Wijesinha-Bettoni et al., 2001) is of the order of 106–107 M�1

at physiological pH levels. The impact of Ca2þ on �-lactalbumin protein
folding has been investigated (Anderson et al., 1997; Troullier et al., 2000;
Wijesinha-Bettoni et al., 2001). Upon formation of a loosely defined protein
state, Ca2þ binding drives the formation of the �-lactalbumin native state,
presumably in a cooperative manner (Forge et al., 1999; Kuwajima et al.,
1989; Troullier et al., 2000). The structural role of Ca2þ and its influence on
the stability of �-lactalbumin were also demonstrated by means of hydrogen
exchange protection (Wijesinha-Bettoni et al., 2001). It was observed that
Ca2þ binding stabilizes the structure of native bovine �-lactalbumin; at pH
8 the Ca2þ-depleted (apo) form of has a melting point Tm of 34�, compared
to 64� for the Ca2þ-loaded (holo) form. Although apo �-lactalbumin dis-
plays a native-like structure, as inferred from CD, fluorescence, and low-
resolution NMR data, and the helical content of apo �-lactalbumin is equal
to (or even slightly greater than) holo �-lactalbumin, the hydrogen-
exchange results indicated that the Ca2þ-binding loop and the C-helix
are stabilized in the holo form. Recently, the crystal structure of apo �-
lactalbumin was solved, and the X-ray data additionally corroborated the
previous finding that Ca2þ causes an increase in stability but little structural
change (Chrysina et al., 2000; Wijesinha-Bettoni et al., 2001).

The Ca2þ-depleted �-lactalbumin was titrated with a concentrated stock
solution of CaCl2 until a 10-fold molar excess of Ca2þ over �-lactalbumin
was reached. Each solution of varying Ca2þ/�-lactalbumin concentration
ratio was subjected to the analysis of the 1H chemical shift distribution. The
titration curve that is obtained is shown in Fig. 4. It can be seen that the
elimination of Ca2þ resulted in a significant reduction in the C(0.5) value.
The addition of Ca2þ leads to an increase in the C(0.5) value. Given the
structural similarities of apo and holo �-lactalbumin, the significant in-
crease of C(0.5) reflects the increased protein stability of the Ca2þ-loaded
form compared to the Ca2þ-depleted form of �-lactalbumin. It should be
noted that this change in protein stability is not obvious from a simple
inspection of the 1D 1H spectra. The dashed line in Fig. 4 was calculated
using the well-known Ca2þ association constant of �-lactalbumin,
KCa ¼ 106 M�1 (literature value of KCa ¼ 106–107 M�1 at physiological
pH) (Wijesinha-Bettoni et al., 2001). The agreement between the theo-
retical curve [by using the experimentally obtained C(0.5) values for the
Ca2þ-depleted and for the Ca2þ-saturated form, respectively] and the



Fig. 4. Ca2þ-induced fold stabilization of �-lactalbumin monitored by statistical analysis of
1H chemical shift distribution. The value of the autocorrelation function at 0.5 ppm, C(0.5),

was taken as a measure for protein structural stability (e.g., foldedness, see text). The black

line represents the titration curve fitted to the experimental values (Kd ¼ 1.2 � 10�5 M), the

dashed black line the theoretical titration curve using the published Ca2þ dissociation constant

Kd of �-lactalbumin (Wijesinha-Bettoni et al., 2001), Ka ¼ 10�6 M.
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experimental C(0.5) values vs. Ca2þ concentration is remarkably good. The
experimentally determined dissociation constant (1.2 � 10�5 M, Fig. 4 solid
line) at pH 6.5 convincingly demonstrates that the proposed method can be
used to study subtle changes of protein structural stability caused by
binding of metals and/or small-molecular-weight ligands. The small reduc-
tion of the observed Kd is presumably due to the lower pH used in the
present study.

Fold Validation

We present here a Monte Carlo/Simulated Annealing (MC/SA) pro-
gram for automated backbone HN, N, and C� chemical shift assignment
and structure validation. The program requires minimal NMR data input
and the existence of a 3D structure of a homology model. Arbitrary
reference numbers are attributed to experimentally observed residues in
3D HNCA and 3D 15N-NOESY-HSQC spectra. Thus, each residue of
the protein is represented by four resonance frequencies [15N, 1HN,
13C�(i), and 13C�(i � 1), respectively]. Input lists containing query protein
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C�(i) and C�(i � 1) chemical shifts of these residues as well as backbone
amide HN–HN NOEs are generated. Based on a precise sequence align-
ment between query protein and homology model, the homology model is
used to predict C� chemical shifts and HN–HN NOEs for stretches of
structurally equivalent query protein residues. Starting from an arbitrary
start configuration, the Monte Carlo algorithm picks randomly pairs of
sequence positions and swaps the residues tentatively assigned to these
positions. An overall scoring value is computed after each of the multiple
Monte Carlo steps to determine whether the proposed random change is
a step toward the correct assignment or not. The random changes pro-
posed to the system are accepted or rejected according to the Metropolis
criterion. The Monte Carlo algorithm is coupled with a Simulated Anneal-
ing protocol that forces the system into a low-energy configuration in
which experimentally observed and predicted NMR shifts and NOEs
match best. An in-depth description of the objective function is provided
in Materials and Methods. The objective function includes mathe-
matical terms accounting for matching of experimentally observed and
predicted NMR parameters such as C� shifts and HN–HN NOEs as well
as sequential C�(i)/C�(i � 1) shift matching along the query protein
sequence.

We have checked the performance of our Monte Carlo–based assign-
ment and structure validation program with five query proteins (calmodu-
lin, 150 residues; MBP, 370 residues; Q83, 150 residues; ICIn, 168 residues;
and CypD, 165 residues) differing in size and tertiary structure in a series of
15 test runs (Table II, Fig. 5). Whereas calmodulin is a purely �-helical
protein, both Q83 and ICln feature �-barrel structures surrounded by a
varying number of helices. MBP is a large two-domain protein with each
domain being made up of numerous strands and helices. The CypD struc-
ture is so far unknown. However, CypD shares a high degree of sequence
similarity with its homologue CypA, which is made up of an eight-stranded
barrel surrounded by three helices and various extended loop segments.

In the case of MBP and calmodulin, we have chosen their X-ray
structures as a homology model. Under these idealized conditions (1) the
homology model sequence covers the entire query protein sequence, (2)
shift and NOE predictions are available for all query protein residue
positions, and (3) sets of ‘‘experimental’’ and predicted HN–HN NOEs,
which were both calculated from the MBP and calmodulin atom coordi-
nates assuming a 5 Å distance cutoff, are identical for NMR-observable
residues with available chemical shifts in the BMRB database. Atom
coordinate–derived ‘‘experimental’’ NOEs for NMR-unobservable resi-
dues (i.e., with no chemical shifts reported in the BMRB data bank) were
omitted from the input file. Therefore, the input list of ‘‘experimental’’



TABLE II

Data Input and Assignment Accuracy of 15 Monte Carlo–Based Assignment Test Runs
a

Test

run

Query protein

(QP)/homology

model (HM)

Non-Pro

residues

in QP

sequence (n)

Non-Pro

residues

in alignment

QP/HM (n)

Experimentally

observed

QP residues

within alignment (n)

HM-based

NOE predictions

(þsequential

NOEs) (n)

Experimentally

observed

QP NOEs (n)

Correct/erroneous

assignment (n)

(% correct

assignments)

1 Calmodulin/

calmodulin

146 146 139 BMRB 4284 323 PDB 1CFF 300 PDB 1CFF 145/1(99%)

2 MBP/MBP 349 349 330 BMRB 4354 697 PDB 1EZO 656 PDB 1EZO 334/15 (96%)

3 Q83/NGL 151 102 99 BMRB 4664 203 (þ43) PDB 1NGL 243 PDB 1JZU 96/6 (94%)

4 Q83/NGL 151 85 82 BMRB 4664 171 (þ53) PDB 1NGL 243 PDB 1JZU 81/4 (95%)

5 Q83/NGL 151 33 33 BMRB 4664 59 (þ109) PDB 1NGL 243 PDB 1JZU 33/0 (100%)

6 Q83/NGL 151 35 32 BMRB 4664 68 (þ103) PDB 1NGL 243 PDB 1JZU 33/2 (94%)

7 Q83/NGL 151 27 24 BMRB 4664 48 (þ109) PDB 1NGL 243 PDB 1JZU 24/3 (89%)

8 Q83/NGL 151 26 26 BMRB 4664 51 (þ113) PDB 1NGL 243 PDB 1JZU 23/3 (88%)

9 Q83/NGL 151 26 26 BMRB 4664 41 (þ114) PDB 1NGL 243 PDB 1JZU 26/0 (100%)

10 ICln/UNC-89 158 74 73 170 (þ87) PDB 1FHO 163b 69/5 (93%)

11 ICln/UNC-89 158 38 34 87 (þ117) PDB 1FHO 163b 34/4 (89%)

12 ICln/UNC-89 158 36 36 67 (þ119) PDB 1FHO 163b 35/1 (97%)

13 CypD/CypA 158 158 153 321 PDB 1CWB 791c 152/1 (99%)

14 CypD/CypA 158 54 54 101 (þ104) PDB 1CWB 791c 49/5 (91%)

15 CypD/CypA 158 55 55 108 (þ101) PDB 1CWB 791c 55/0 (100%)

a Column 1, number of test run. Column 2, query protein and structure homologue. Column 3, number of nonproline residues in the query

protein sequence. Column 4, number of query protein residues that are aligned with and structurally similar to the homology model. Column

5, number of NMR-detectable residues of column 4; if chemical shift information was obtained from the BMRB database, the corresponding

query protein entry code is provided. Column 6, number of homology model-based HN–HN NOE predictions as derived from homology

model atom coordinates; homology model PDB entry codes are provided; the numbers in parentheses refer to additional sequential HN–HN

NOE predictions that were introduced for query protein residues with no structure similarity to the homology model. Column 7, number of

experimentally observed query protein HN–HN NOEs; the query protein PDB entry codes is provided, if ‘‘experimental’’ NOEs were

calculated from query protein atom coordinates. Column 8, number of residues in column 4 that were correctly and erroneously assigned

and percentage of correctly assigned residues.
b Synthetic HN–HN NOEs derived from query protein atom coordinates.
c HN–HN NOE input list results from a manual signal assignment performed with a 15N-NOESY-HSQC and was generated as outlined in

Materials and Methods.
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NOEs comprises 93% (calmodulin) and 94% (MBP) of the predicted
NOEs. Homology model shift estimates were generated by using ShiftX
(Neal et al., 2003) software and thus differ from experimental chemical
shifts obtained from the BMRB data bank.

In the case of the query proteins ICln and Q83, test conditions were
much closer to real situations. ICln and Q83 structure homologues were
identified through knowledge-based potential methodology (Domingues
et al., 1999; Sippl, 1993, 1995). Segments of the PH domain from the
Caenorhabditis elegans muscle protein UNC-89 (PDB-ID, 1FHO: BMRB
accession number, 4373) and of human neutrophil gelatinase-associated
lipocalin NGL (PDB-ID, 1NGL; BMRB accession number, 4267) were
revealed to share strong structural similarities with 47% of the ICln and
71% of the Q83 primary sequence, respectively. Therefore, these homology
segments were used for shift and NOE predictions for structurally equiva-
lent query protein segments. For the remaining Q83 and ICln residues with
no structure similarity with NGL and UNC-89, respectively, random coil
shifts and sequential HN–HN NOEs were added to the input lists. A synthet-
ic set of Q83 HN–HN NOEs computed from Q83 atom coordinates repre-
sents again a complete and unambiguous input list. The ratio of Q83
‘‘experimental’’ NOEs and predicted NOEs based on the structural model
(1NGL) is close to 1. In contrast to Q83, the list of experimental ICln NOEs
was obtained from a manually picked and edited 15N-NOESY-HSQC
spectrum of the protein. This results in a decreased ratio in experimental
to predicted NOEs of �0.7, since complete observation of dipolar-coupled
Fig. 5. Graphic representation of assignment results obtained with our Monte Carlo–based

approach for calmodulin (A), maltose-binding protein (B), Q83 (C), Icln (D), and CypD (E).

The upper row in (A–E) represents the entire query protein primary sequence with each bar

symbolizing one residue. Missing bars indicate residue positions occupied by prolines. NMR-

detectable residues are shown as black bars and NMR-unobservable residues as unfilled black

bars. Each individual test run is numbered as in Table I. The result of each test run is

summarized by two rows of bars. Those query protein residues that are not part of homology

segments (which have no structural equivalent in the homology model) as well as prolines

were omitted from both rows. Upper row: correct assignment, black; erroneous assignment,

gray. Lower row: residue with C�(i � 1) chemical shift matching/mismatching with C�(i)

chemical shifts of its predecessor, black/gray, respectively. Filled bars represent NMR-

observable residues; unfilled bars indicate NMR-unobservable residues. Note that no

statement about interresidue C� chemical shift matching/mismatching can be made for

residues adjacent (C-terminal) to NMR-unobservable residues. Maximal bar height

symbolizes 100% assignment reproducibility after 20 independent assignment cycles. Reduced

reproducibility is accordingly indicated by lower bar heights. The ribbon drawings display

those parts of the query proteins that are made of the residues shown in the upper and lower

rows. The positions of erroneously assigned residues are shown as small spheres. All ribbon

drawings were generated with MOLMOL (Koradi et al., 1996).
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backbone amide protons is hampered by shift degeneracies and relaxation
processes.

Cyclophilin P chemical shift and NOE input lists originated exclusively
from NMR spectra and, therefore, test conditions were most demanding in
calculations performed with these data sets. CypD shares �90% sequence
identity with human cyclophilin A (PDB ID, 1cwb, X-ray structure, com-
plexed with cyclosporin; BMRB entry code, 2208). However, no structural
information is yet available for CypD. Input lists containing experimental
as well as predicted C�chemical shifts and HN–HN NOEs were generated
as described in Material and Methods. A total of 412 HN–HN NOEs were
peak picked in the 15N-NOESY-HSQC spectrum of CypD in the spectral
window from 6 to 12 ppm. For 183 NOEs, a single dipolar coupling partner
was identified. For the remaining 229 NOEs either more than one or
no symmetric cross-peak was detected. By taking into consideration all
potential dipolar coupling partners, these 229 NOEs were duplicated to a
total of 776 NOEs (see Materials and Methods). Under the assumption that
the correct dipolar coupling partner is assigned to at least one of the
duplicated NOEs, this resulted in adding 547 wrong NOEs to the input file
list. Redundant NOEs (i/j j/i) were filtered out, leaving 791 experimentally
observed dipolar coupling interactions in the NOE input file list. Using a
5 Å distance cutoff, 321 HN–HN NOEs were predicted for CypD based on
the analysis of the atom coordinates of the CypA structure homologue.
Thus, the ratio of experimental to predicted NOEs amounts to 2.5 and is
considerably higher than for the previously mentioned test query proteins.

In our test examples, 72% (ICln) to 97% (CypD) of the nonproline
residues were NMR detectable. The large majority of query residues within
homology segments were NMR detectable; most of the undetected resi-
dues fall into sequence regions having no sequence alignment with the
homology model and for which no homology model–based shift and
NOE predictions are available (Fig. 5).

A first series of test runs (Table II and Fig. 5) was performed for all
query proteins with the entirety of available input data (test runs 1, 2, 3, 10,
and 13). In subsequent test calculations (4–9, 11–12, and 14–15) test con-
ditions were artificially rendered more demanding. The goal of subsequent
test runs was to check whether our Monte Carlo–based assignment
procedure produces satisfying results if shift and NOE predictions are
available only for smaller structural elements, i.e., if the homology model
covers only smaller building blocks of the query protein. To this end, the
homology model–based shift and NOE predictions for the query proteins
ICln, Q83, and CypD were deleted for varying homology segments. Pre-
dicted NMR data were retained for smaller structural subunits comprising
only 17–59% of the query protein primary sequence. Shift and NOE
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predictions that were deleted for certain query protein segments were
replaced by random coil chemical shifts and sequential HN–HN NOEs.
This results in a considerable decrease in the total number of homology
model–based NOE predictions and in a change in the ratio of experimental
to predicted NOEs.

In each test run, the program was allowed to assign all experimentally
observed query protein spin systems to all nonproline residues of the query
protein primary sequence, whether homology model–derived shift and
NOE predictions were available for a specific sequence position or not.
To assess the reproducibility of the assignment, each test run was per-
formed 20 times. If the assignment for a specific query protein residue
position was ambiguous, i.e., if after 20 assignment cycles more than one
spin system was attributed to that position, the spin system that occurred
most often was chosen for the final assignment. (This method does not
necessarily result in a unique assignment, since a specific spin system might
be retrieved at more than one residue position of the query protein.)

In spite of the diversity of test conditions, the assignment accuracy is
satisfying in all cases. In the first series of test runs performed with the
entirety of available homology model–based shift and NOE predictions,
the percentage of correctly assigned residues within homology segments
ranges from 93% (ICln) to 99% (calmodulin, CypD). The slightly lowered
value of successfully assigned ICln residues in test run 10 may be due to the
fact that an increased number of ICln residues (28%) was not detected by
NMR and that homology model–derived shift and NOE predictions were
available for only 47% of the ICln primary sequence. Surprisingly, our
Monte Carlo assignment algorithm performed equally well in the second
series of test calculations in which test conditions were rendered more
demanding by retaining homology model–based shift and NOE predictions
for smaller structural motifs. In these test runs, the percentage of correctly
assigned residues ranges from 88% to 100% within these smaller building
blocks.

In our test runs 75–100% of residues are assigned with a reproducibility
of 75% or higher. The vast majority of these residues are correctly
assigned. Based on our results, we can define the rule of thumb that the
assignment of a specific residue is correct if it is part of a stretch of four or
more consecutive residues that do not have any C� chemical shift mis-
matches and display an assignment reproducibility of >75% for each
residue. Surprisingly, a clear majority of assignments with considerably
higher uncertainties are still correct. Erroneous assignments may become
manifested in C� chemical shift mismatches between adjacent residues.
In addition, wrong assignments are evident if a certain experimentally
observed residue appears (in rare cases) more than once in the final
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assignment list as a result of the final selection procedure performed after
multiple independent Monte Carlo cycles as described above. (These are
residues with an assignment reproducibility <50%.) Certain query protein
residue positions appear to be more prone to erroneous assignments than
others, and special care should be taken in the evaluation of these posi-
tions. Within homology segments, most of the erroneous assignments occur
(1) at residue positions adjacent to prolines (e.g., MBP residues Pro-48-49-
50), (2) at the N- or C-terminal ends of homology segments (e.g., ICln
residues 27–29), (3) at sequence positions whose corresponding residues
are not detected (e.g., Q83 residue position 85), or (4) in combinations of
these situations.
Discussion

The statistical interpretation of chemical shifts was pioneered in the late
1960s by Schaefer and Yaris (1969) when they demonstrated that the
complicated 13C and 1H NMR spectra of the cyclic tetramer of polypropyl-
ene oxide can be interpreted by an analysis of the spin hamiltonian in
terms of the statistical theory of energy levels. Later, their suggestions
were taken up by Lacelle (1984), who applied the approach to a vitamin
(vitamin B12), an antibiotic (alamethicin), and a protein (trypsin inhibitor
homologue K) and showed that the method indeed provides, at least, a
qualitative estimation of the degree of correlation between energy levels
via a characterization of the spacing distribution of energy levels.

Here we systematically studied a diverse selection of proteins, compris-
ing pure �-helical as well as �/� proteins, the relationship between the 1H
chemical shift distribution and protein structural stability in solution (e.g.,
foldedness and/or topological complexity of protein). The strategy was
initiated by the idea of developing a robust, straightforward method
to analyze protein spectra and to investigate the possibility of probing
protein structural stability by a general method without the need of
time-consuming assignment strategies, as this would be of significance to
ongoing large-scale structural genomics efforts devoted to structural char-
acterization of a vast number of proteins. In the analysis of the 1H chemical
shift distribution, we calculate the autocorrelation function C(!) of the 1D
1H spectra and take the value of C(!) at 0.5 ppm as a quantitative bench-
mark to discriminate between folded, partially folded, and random-coil
proteins. We do not attempt to physically interpret this parameter but
rather use it as a quantitative means to probe fold stability. The analysis
of the protein set convincingly demonstrated that it is indeed possible to
probe protein structural stability through this simple analysis of 1D 1H
protein NMR spectra. There is a significant difference between proteins
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exhibiting a well-defined 3D structure and proteins that appear to be
unfolded, partially folded, or that exist in a molten globule state.

The particular merits of the method are the ease of implementation,
small amount of material (given the advent of more sensitive NMR detec-
tion schemes, e.g., cryoprobes), the high-throughput capability, and the
fact that no isotope labeling is necessary. We thus foresee several obvious
applications. First, recent genomic sequencing efforts have provided the
coding DNA sequences of a large number of unknown genes and structural
genomics or structural proteomics (Prestegard et al., 2001) attempts to
provide 3D structural information of proteins encoded by the sequenced
genes. Irrespective of the method of structure determination (X-ray or
NMR spectroscopy), NMR is expected to play a significant role in
structural genomics activities (Prestegard et al., 2001), as, for example,
15N-filtered H/D exchange-based NMR experiments (Prestegard et al.,
2001) (e.g., the identification of rapidly exchanging amide protons) and
simple 1D experiments (Rehm et al., 2002) have already been demon-
strated to be very effective to screen expressed and purified proteins for
stability, structural disorder, and/or sample conditions that are favorable
for crystallization. The data presented in this chapter suggest that this
spectral autocorrelation method will be very valuable for this purpose, as
the method does not require isotope labeling and also provides a means to
identify metals and/or small ligands as well as macromolecular interactions
that may be relevant for fold stabilization and function.

In contrast to structural genomics efforts that aim at characterizing
folded proteins, a recently proposed target selection strategy focuses on
unusual and uncharacterized soluble proteins in Mycoplasma genitalium,
the smallest autonomously replicating organism (Balasubramanian et al.,
2000). The aim of this approach was to identify proteins that show atypical
behavior in terms of structural stability (foldedness), for example, proteins
that are ‘‘unstructured’’ in the absence of a binding partner or that exhibit
unusual thermodynamic properties. In this study, CD spectroscopy was used
to probe the integrity of folding and to investigate the thermodynamic
stability. As an alternative to optical methods, a mass spectrometry–based
approach for protein stability screening was recently designed, which can
even be extended to in vivo studies (Ghaemmaghami and Oas, 2001;
Ghaemmaghami et al., 2000). With its ease of implementation, numerical
analysis, and high-throughput capability, the proposed method should prove
to be an additional important element of modern proteomic technology.

Second, the results obtained on the titration of �-lactalbumin with Ca2þ

show that the proposed method can detect binding through changes of
the 1H chemical shift distribution, which in turn reflect protein stability
changes. Given the well-established link between thermodynamic protein
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stability and ligand binding (Pace and McGrath, 1980), it may also be
possible to use the high-throughput capability of the proposed method to
screen large ligand libraries (Diercks et al., 2001; Moore, 1999). If
13C, 15N-labeling of the protein is available, the method can be applied
equally to protein–protein and protein–nucleic acid complexes. In particu-
lar, the approach can be applied to identify proteins that are only loosely
defined structurally and undergo conformational restructuring or even
adopt a well-defined native structure only upon binding to their authentic
binding partners (for a review, see Wright and Dyson, 1999), a phenome-
non that remarkably and unexpectedly is even more pronounced in higher
organisms (Dunker and Obradovic, 2001).

Finally, data obtained on partially folded proteins (the native-like
�-lactalbumin molten globule and the partially folded oncogenic transcrip-
tion factor v-Myc) suggest fruitful applications of the proposed method
to studies of molten globules and protein folding (Dolgikh et al., 1981;
Kuwajima, 1989; Ptitsyn, 1995). For example, site-directed mutagenesis
has been successfully applied to obtain a quantitative measurement of
the contributions of individual residues to the stability of molten globules
(Hughson et al., 1991). Additionally, studying the contribution of individual
residues to the protein structural stability of molten globules may be
valuable for understanding this important protein state.

The tremendous advance in the large-scale gene sequencing of
whole genomes poses an enormous challenge to NMR spectroscopy. New
integrated approaches are necessary to enable NMR spectroscopy to solve
protein structures in a high-throughput manner and thus to keep pace with
the generation of huge amounts of sequence information. In this context
many research groups, including ours, have focused their efforts on the
development of new programs devised to speed up the process of NMR
structure elucidation. The program presented here is a powerful new tool
for rapid sequence-specific assignment of backbone resonances of uniform-
ly 13C- and 15N-labeled globular proteins and structure validation. Our
approach requires minimal NMR data input from two 3D spectra and
therefore a reduced amount of spectrometer time. The need for more
extensive data collection is circumvented by using chemical shift and NOE
predictions derived from a 3D structure of a query protein homologue.
Although additional data input is not mandatory for obtaining correct
assignments, further chemical shift and interresidue connectivity informa-
tion can easily be included for H�, C�, and C0 nuclei. It is, however,
important to note that the performance of our program in its present form
depends on the sequence alignment accuracy of structurally equivalent
blocks of the query protein and its homologue. We have observed that the
assignment accuracy deteriorates in particular if query protein segments
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predicted to form a �-sheet structure are inaccurately aligned with the
homology model sequence (data not shown). A modification of the current
form of the objective function, in particular the replacement of the Tanimo-
to coefficient by a more sophisticated expression, might help to eliminate
the pitfall of improper sequence alignment. As test runs with CypD input
data have clearly demonstrated, our program is robust enough to tolerate
numerous ambiguous HN–HN NOEs resulting from the inability to clearly
identify the majority of dipolar-coupled pairs of backbone amide protons
on the sole basis of a 3D 15N-NOESY-HSQC spectrum. In addition, even if
homology model–based shift and NOE predictions are missing for certain
residue stretches, the algorithm is still able to find the correct assignments
for the remaining protein segments. The latter feature represents a distinct
advantage of the program described in this chapter over existing assign-
ment and structure validation programs and suggests fruitful applications
in the scanning of query proteins for the presence of structure templates.
Template scanning and motif recognition are useful when complete ho-
mology model covering the entire query protein sequence is not available
and/or to study protein modules in the context of multidomain proteins.
Conclusions

We have demonstrated that protein structural stability is reflected in
the distribution of protein 1H chemical shifts. A method was proposed that
does not require isotope labeling but instead uses easily obtainable 1D 1H
spectra, from which the spectral autocorrelation function is calculated. The
method allows a significant and reliable distinction between unfolded
or partially folded proteins and proteins with well-defined global folds.
Additionally, the precision of the method is sufficient to discern subtle
differences in protein structural stability between, for example, the molten
globule state of �-lactalbumin with a native-like overall fold and the
partially folded (displaying a single �-helix and lacking long-range tertiary
interactions) oncogenic transcription factor v-Myc with possible applica-
tions to protein folding studies. Data obtained on the Ca2þ-depleted apo
and the Ca2þ-loaded holo form of �-lactalbumin additionally suggest that
the method is able to detect subtle changes in protein stability caused by
ligand binding. The method can easily be adjusted for screening purposes
using NMR flow probes and micromanipulator robots and should conse-
quently prove useful for target selection in high-throughput structural
genomics and the identification of experimental conditions to optimize
protein stability and crystal formation.

As the number of experimental protein structures is expected to signifi-
cantly increase in the foreseeable future, comparative structure prediction
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will become an essential tool in structural genomics. Although the reliabil-
ity of structural modeling approaches is well documented and the precision
(and accuracy) of predicted structures is sufficiently high to draw conclu-
sions about putative biochemical functionality, there is still a demand for
experimental verification and/or subsequent structural refinement. Given
the robustness and reliability of our proposed strategy, we anticipate
fruitful applications of the methodology in ongoing structural genomics
efforts.
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[7] Determination of Protein Backbone
Structures from Residual Dipolar Couplings

By J. H. Prestegard, K. L. Mayer, H. Valafar, and G. C. Benison

Abstract

There are a number of circumstances in which a focus on determination
of the backbone structure of a protein, as opposed to a complete all-atom
structure, may be appropriate. This is particularly the case for structures
determined as a part of a structural genomics initiative in which computa-
tional modeling of many sequentially related structures from the backbone
of a single family representative is anticipated. It is, however, also the case
when the backbone may be a stepping-stone to more targeted studies of
ligand interaction or protein–protein interaction. Here an NMR protocol is
described that can produce a backbone structure of a protein without the
need for extensive experiments directed at side chain resonance assign-
ment or the collection of structural information on side chains. The proce-
dure relies primarily on orientational constraints from residual dipolar
couplings as opposed to distance constraints from NOEs. Procedures for
sample preparation, data acquisition, and data analysis are described, along
with examples from application to small target proteins of a structural
genomics project.

Introduction

Residual dipolar couplings (RDCs) are now widely used as a source of
constraints in the determination of the structure of biomolecules. Several
reviews on the subject have appeared (Al-Hashimi and Patel, 2002;
Bax et al., 2001; de Alba and Tjandra, 2002; Prestegard et al., 2000; Tolman,
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