Inservice:

Proteins & Enzymes

The University of Texas Southwestern Medical Center at Dallas Saturday, Dec. 2, 2006 Meeting Room NG3.202

9:00 a.m. - 3:00 p.m.

Program

9:15-10:30	Joel Goodman	NG3.202	Intro to Proteins and Enzymes
10:30-11:00	David Russell	NG3.202	A Case of Mistaken Identity
11:15-11:45	David Russell	L5.262	Visit to the Russell lab
12:00-12:45	Lunch	NG3.202	
12:50-1:30	Chad Drauticam	ND10.606	Introduction to Drotain Structure
12.00 1.00	Chad Brautigam	NB10.000	Introduction to Protein Structure
1:30-2:30	Joel Goodman	NG3.202	Measuring Alkaline Phosphatase Activity

Introduction to Proteins and Enzymes

- Basics of protein structure and composition
- The life of a protein
- Enzymes
 - Theory of enzyme function
 - Not all enzymes are proteins / not all proteins are enzymes
 - Enzyme REGULATION
- Setting up an enzyme assay

- Buffer, cofactors, substrate, enzyme

Why are Proteins Important?

- Major class of catalysts in the cells; responsible for metabolism
- Proteins interconvert energy
- Proteins permit selective import and export of molecules from cells and organelles
- Proteins allow movement
- Proteins provide structural support for the organism and individual cells

What is a protein?

- Linear chain of amino acids
 - Amino acid: $NH_3 C_{\alpha}X COOH$

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

- 20 naturally occurring ones; essential and nonessential
- Contains 3 or 4 hierarchies of structure
 - Primary structure: sequence
 - Secondary structure: alpha helix, beta strand, turn, [random coil]
 - Tertiary structure: beta barrel, ARM repeats, helixloop helix, etc.
 - Sometimes contains quaternary structure (proteinprotein interactions)

Properties of Amino Acids

Name (Residue)	3- letter code	Single code	Relative abundance (%) E.C.	мw	рК	VdW volume(Å ³)	Charged, Polar, Hydrophobic
Alanine	ALA	A	13.0	71		67	Н
Arginine	ARG	R	5.3	157	12.5	148	C+
Asparagine	<u>ASN</u>	N	9.9	114		96	P
Aspartate	<u>ASP</u>	D	9.9	114	3.9	91	C-
Cysteine	<u>CYS</u>	С	1.8	103		86	P
Glutamate	<u>GLU</u>	E	10.8	128	4.3	109	C-
Glutamine	<u>GLN</u>	Q	10.8	128		114	P
Glycine	<u>GLY</u>	G	7.8	57		48	-
Histidine	HIS	H	0.7	137	6.0	118	P,C+
Isoleucine	ILE	I	4.4	113		124	Н
Leucine	LEU	L	7.8	113		124	Н
Lysine	LYS	K	7.0	129	10.5	135	C+
Methionine	MET	М	3.8	131		124	H
Phenylalanine	PHE	F	3.3	147		135	Н
Proline	<u>PRO</u>	Р	4.6	97		90	Н
Serine	<u>SER</u>	S	6.0	87		73	P
Threonine	THR	Т	4.6	101		93	Р
Tryptophan	TRP	W	1.0	186		163	P
Tyrosine	TYR	Y	2.2	163	10.1	141	P
Valine	VAL	V	6.0	99		105	Η

http://dwb.unl.edu/Teacher/NSF/C10/C10Links/www.ccp14.ac.uk/ccp/web-mirrors/llnlrupp/Xray/tutorial/protein_structure.htm

More on Primary Structure

Amino Acid QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Peptide Bond Formation (a condensation reaction)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

http://dwb.unl.edu/Teacher/NSF/C10/C10Links/www.ccp14.ac.uk/ccp/web-mirrors/llnlrupp/Xray/tutorial/protein_structure.htm

Peptide Bond Formation (a condensation reaction)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Peptide Bond Formed QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

http://dwb.unl.edu/Teacher/NSF/C10/C10Links/www.ccp14.ac.uk/ccp/web-mirrors/llnlrupp/Xray/tutorial/protein_structure.htm

φ φ, and Hydrogen Bonds, Dictate Secondary Structure

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

An Alpha Helix

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Three representations of an alpha helix

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Ball and stick

Backbone

Ribbon, or Linguini diagram

Beta strands are connected by hydrogen bonds

http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/protein.htm

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Alpha helix

Two beta strands

Beta Strains Make Pleated Sheets

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Helices and Strands Can Make Folds

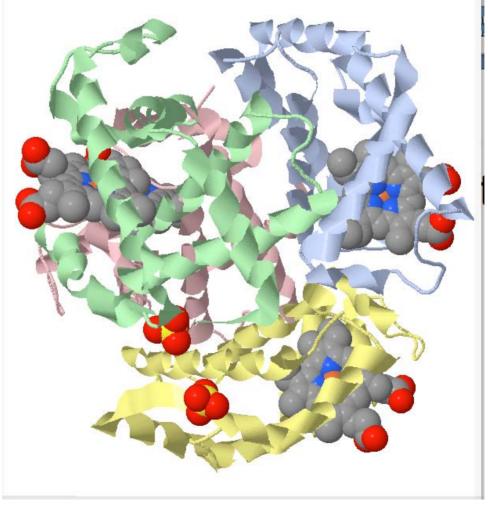
A Simple Example of Tertiary Structure

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. EF hand in Calmodulin (helix turn helix)

Other Common Folds

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.


AB barrel

Beta barrel

http://www.rpi.edu/dept/bcbp/molbiochem/MBWeb/mb1/part2/glycolysis.htm#tim

Polypeptides Can Associate to Form Quaternary Structures

Hemaglobin (deoxy form)

You can observe proteins dynamically in three dimensions

http://molvis.sdsc.edu/fgij/index.htm

Jmol website

The Life of a Protein

- Synthesis
- Folding
- Targeting
- Function
- Death

Proteins are Polymerized on Ribosomes

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

http://www.elmhurst.edu/~chm/vchembook/584proteinsyn.html

Protein Elongation

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Protein Termination

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

http://www.elmhurst.edu/~chm/vchembook/584proteinsyn.html

Protein Synthesis Web Animation

http://www.johnkyrk.com/DNAtranslation.html

Evolution of proteins

- Some pre-RNA polymer is believed to have come first; RNA evolved from that
- RNA can function as enzymes
- RNA became the template for DNA
- Amino acids are attracted to codons
- RNA catalyzed condensation of amino acids
- Ribosomes evolved to increase efficiency and fidelity

Folding of proteins

- Structure of proteins in inherent in primary sequence (shown first for ribonuclease by Anfinson)
- Proteins fold to reach their lowest energy
- But cytoplasm is full of molecules; proteins would self-fold with difficulty
- Chaperones bind hydrophobic surfaces and protect proteins during folding
- Misfolding results in aggregation (Alzeimer's disease, prion disease)

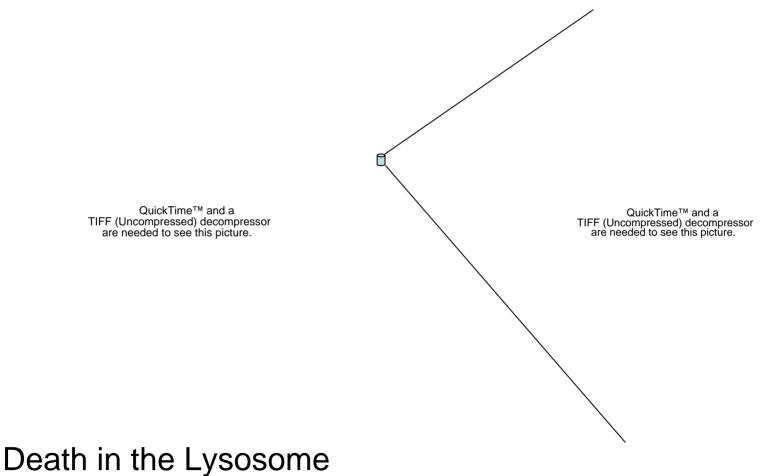
Folding Occurs to Reach Lowest Energy

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

http://cnx.org/content/m11467/latest/

Protein Targeting

- About half of proteins are destined for other locations in the cell.
- They have "targeting sequences" to get them there.
- Many accessory proteins are required for targeting.


QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Mitochondrial import, 2006

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Rehling and Pfanner (2004) Nat Rev MCB

Protein Death

http://cellbio.utmb.edu/cellbio/lysosome.htm

Death in the Proteosome

http://en.wikipedia.org/wiki/Proteasome

Enzymes

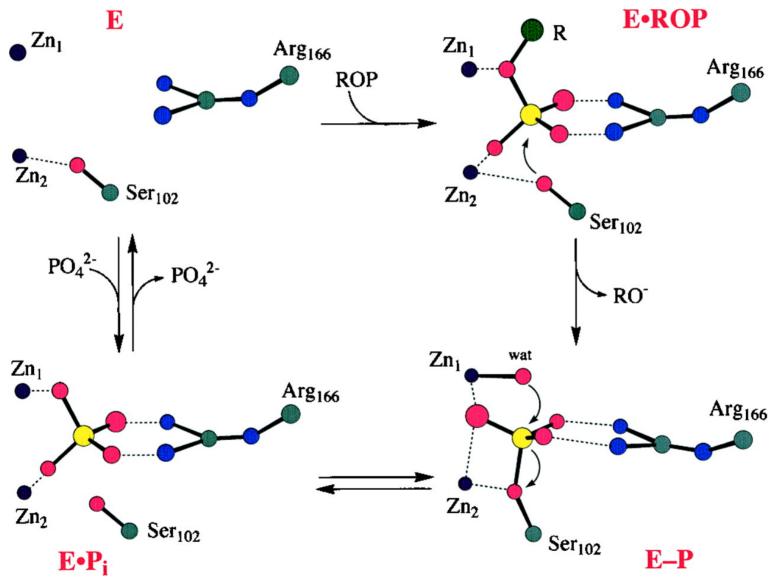
What is an Enzyme?

- A protein molecule produced by living organisms that <u>catalyses chemical reactions</u> of other <u>substances</u> without itself <u>being</u> destroyed or altered upon completion of the <u>reactions</u>.
- Sometimes require cofactors (often metals or vitamin derivatives)
- Six types of reactions: <u>oxidoreductases</u>, <u>transferases</u>, <u>hydrolases</u>, <u>lyases</u>, <u>isomerases</u> and <u>ligases</u>.
- Ribozymes: RNA-based enzymes

Consider a Phosphatase

- Function: Desphosphorylation of proteins and nucleotides
- Reaction:

$R-O-PO_3 + H_2O \longrightarrow R-OH + PO_4H$

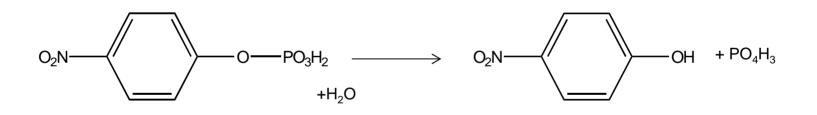

J Biol Chem, Vol. 274, Issue 13, 8351-8354, March 26, 1999

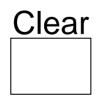
COMMUNICATION

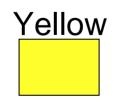
A Model of the Transition State in the Alkaline Phosphatase Reaction*

Kathleen M. Holtz, Boguslaw Stec, and Evan R. Kantrowi

Bacterial Alkaline Phosphatase


http://www.jbc.org/cgi/content/full/274/13/8351


Why study enzyme kinetics?


- Elucidation of enzyme mechanisms
 Dependence on cofactors, pH, etc.
- Role of enzymes in pathways
 Rate-limiting step?
- Discovery of true substrates and products
- Inhibition by drugs

Use of a "Model Substrate" to Study AP

- Para-nitrophenyl phosphate (pNPP)
- Hydrolyzed to para-nitrophenol

What we shall do?

- Divide up into 7 groups
- Each group will perform a different reaction:
 - 1) Does zinc stimulate?
 - 2) Is magnesium required?
 - 3) Does the reaction stop completely on ice?

- 4) What happens with no substrate?
- 5) What if you lower the pH?
- 6) What if you add phosphate?
- 7) THE GOLD STANDARD