Anti-malarial Drug Discovery

Jeffrey Baldwin, PhD UT Southwestern Medical Center Department of Pharmacology

Malaria Burden

Nature Reviews | Drug Discovery

Life Cycle

Jones & Good, Nature Medicine (Feb. 2006)

Complex life cycle Intracellular parasite

Pathogenesis

4 *Plasmodium* species are human pathogens:

Falciparum

Vivax

Ovale

Malariae

Miller et al, Nature (7 Feb, 2002)

Clinical Outcomes

Miller et al, Nature (7 Feb, 2002)

Immune Evasion

PfEMP1 is key to lethality of *P. falciparum*

Sticky molecules evade immune response and clog capillaries

Miller et al, Nature (7 Feb, 2002)

Discovery Process

I. Rational Drug Design requires detailed structural information

II. Combinatorial Chemistry

compound diversity is based on a core structural template

III. Compound Libraries

screen compounds with diverse chemical properties

identification of novel "scaffolds"

Why more anti-malarials?

Pyrimidine Biosynthesis in *Plasmodium falciparum*

Malaria parasites rely exclusively on *de novo* pathway whereas the human host is also capable of salvage

Inhibitors of pyrimidine biosynthesis are proven drugs, eg. TS and DHFR

These data suggest other enzymes in the pathway are also essential and therefore represent potential drug targets

DHODH as a drug target against Malaria

DHODH catalyzes the FMN-dependent oxidation of L-dihydroorotic acid

Malarial DHODH is mitochondrial and is rate limiting in the synthesis of UMP

Human DHODH is a validated target

DMARD approved for treatment of rheumatoid arthritis Mode of Action: Inhibition of DHODH

-DHODH is major binding protein of A77-1726

-uridine reverses growth toxicity effects

Selectivity based on differential pyrimidine requirements in resting versus activated T/B cells

X-ray structure of human DHODH

247 N30

Truncated human DHODH (Δ 30)

<u>Two domains:</u>

1. TIM barrel

-orotate and FMN binding sites

2. α -helical domain forms tunnel opening leading to the active site

The A77-1726 and brequinar binding site is in a channel formed by the helix region and is the site of binding for the CoQ substrate

Active site of DHODH is variable

Grey residues are conserved between human and malarial enzymes

Validation of active site selectivity

Confirm species selective inhibition between human and malarial enzymes

Test derivatives of existing scaffolds that inhibit DHODH from other species,

-A77-1726 analogs

-Redoxal, DCL

Strategies to identify malaria DHODH specific inhibitors

Strong species selectivity as predicted from structure and sequence alignments

Existing inhibitor scaffolds will require a significant chemistry effort to improve activity on the malarial enzyme

Search for novel scaffolds

High-throughput screening of a small molecule library

High-throughput Screening (HTS)

 Small molecule library consisting druglike compounds

- Automated screening of molecules for inhibition of enzyme activity
- Assay Requirements
 - Simple, robust, and reproducible
 - •End-point
 - Reliable method of detection

DHODH HTS Assay

Endpoint colorimetric assay

Initial HTS of malaria DHODH at 3 µM for compound collection > 200,000 small molecules

Hit was defined at > 4 SD from the mean

Screen 12,800 per day

DHODH HTS Results

Representative 384-well plate from HTS

1350 compounds were identified as 'hits' from the primary HTS

DHODH HTS Strategy

End-point calorimetric assay

1350 hits from initial screen were tested at 0.12, 0.6, and 3 μM for both malaria and human DHODH enzymes

DHODH HTS Results

63 compounds were identified with IC_{50} values less than 600 nM for pfDHODH

-all but one displayed selective binding to the malarial enzyme

~30 compounds fall into related structural classes

1. Halogenated phenyl benzamide/naphthamides

2. Urea-based naphthyl or quinolinyl compounds

-remaining compounds identified with novel scaffolds

General classes of HTS hits

#	R ₁	R ₂	ΙC ₅₀ μ Μ	fold
4	Br	н	.06	1800
5	Cl	F	.10	1200
6	Cl	Cl	.016	12500
7	F	F	.26	770
9	Cl	Cl	.08	900
10	CF₃	н	.08	1900

Biphenyl amides:

-Reversible enzyme inhibitors -IC₅₀ = 20 - 300 nM pfDHODH -900 - 20,000 fold selective

General classes of HTS hits

Naphthyl phenyl amides:

-IC₅₀ = 50 - 500 nM *pf*DHODH

-70 - 4,000 fold selective

$$R_1, R_2$$
 = halogen, H, or CH_3

Napthyl phenyl ureas:

- -IC₅₀ = 200 800 nM *pf*DHODH
- -150 2,000 fold selective
- R = halogen, CF_3 , OCH_3

SAR analysis of pfDHODH Inhibitors

-aromatic rings

- -prefers amide bonds
- -tolerates variable size and substituents on one ring
- -has a strong preference for 2,3-methyl-nitro substituents
- -selectivity increases with potency

Reconfirm and validate hits

HPLC purification and MS analysis

Selective inhibition of *pf*DHODH

Grey = conserved between human and malaria enzymes

Analysis of inhibitor binding site

Analysis of inhibitor binding site

Compound 6 is a competitive inhibitor of CoQ

Analysis of inhibitor binding site

Mutagenesis data strongly suggests that these newly identified *pf*DHODH inhibitors bind the same site as the established inhibitors of hDHODH (e.g. A77-1726 and brequinar)

Kinetic analysis suggests this is also the CoQ site

Species differences in the amino acid composition of this site explain the structural basis for selective binding

The more conserved orotate site does not appear to be targeted in screen

Activity of biphenyl amides and ureas on *P. falciparum* cultures

Compound 1; 20% at 10 μM

No growth inhibition observed for others up to 10 - 100 μM

Selective and potent inhibitors of the malarial enzyme

DHODH HTS Results—Selective inhibition by GR-34

DHODH HTS Results—Activity of GR-34 on *P. falciparum* cultures

Measured by ³H-hypoxanthine incorporation

In vivo Screening

Nature Reviews | Drug Discovery

Conclusions

Identified potent and selective inhibitors of malarial DHODH

-Inhibitors likely bind the CoQ binding site

-Structural basis for selectivity is large sequence variations in this site between species

Identified a *pf*DHODH inhibitor that kills malarial parasites with specificity

Acknowledgments

University of Washington Phillips Lab -Pradip Rathod -Meg Phillips -Nick Malmguist -Azizeh Farajallah -Jeongmi Lee -Ramesh Gujjar -Farah El Mazouni -John White HTS Core (Biochemistry) Funding -Carolyn Michnoff NIH, The Welch Foundation -Mike Roth