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Cellular Damage 

New Gene Expression 

Exploitable Target: Expressed  
in Human Tumors, not (or low)  

in Normal Tissues 

Bioactivate Drug For  
Tumor-Selective Killing 

-Not cell cycle regulated              -Not affected by drug resistance 

-Not dependent on p53 status     -Not affected by hypoxia 

-Not dependent on caspases       -Selective for tumors 

 

IR 

xips 

NQO1 

ß-Lapachone 



β-Lapachone (ß-Lap) 

The Lapacho Tree 

Tabebuia avellanedae 
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Presenter
Presentation Notes
ß-Lap is a 1,2 napthaquinone
Derived from the bark of the lapacho tree in south america
It has been  used extensively in folk medicine to treat a number of ailments ranging everywhere from bedwetting to arthritis
Initially it was studied for its anit-malarial and anti-tyrpanosomal properties
However, it wasn’t until 1979 that ß-Lap was described as having anti-tumor activity in leukemic and carcinoma cells

Today the exact mechanism of ß-Lap is still unknown
Unlike most drugs it elicits apoptosis rather than necrosis shown by membrane blebbing, nuclear condensation, and DNA laddering (tunnel positivity)



Radiosensitization Mechanism:     IR induces NQO1(xip3), the principal determinant of ß-lap 
                                   cytotoxicity (Pink, et al., JBC, 2000). 
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ß-Lapachone radiosensitized human cancer, but not normal, cells 
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              -Early marker of carcinogenes
              -Up-regulated after carcinogenic cell stres
              -Over-expressed in many cancers, as well a
          in angiogenic endothelial cells 

NQO1:  An Important Target for Cancer Therapy 

    Tumor-selective NQO1 Elevation 
 
• 80% Breast Cancers, 10- to 20-fold ** 
  
• 70% Prostate Cancers, 10- to 20-fold ** 
 
• 60% Colon Cancers, 5- to 10-fold 
 
• 90% Pancreatic Cancers,  
                   (J. Cullen, U. Iowa) 
 
• 70% NSCLC (not SCLC), 20- to 40-fold ** 

** Will discuss isogenic models +NQO1 



NQO1 Is Elevated In Nonsmall Cell Lung Cancer (NSCLC) 



NQO1 Expression Confers Cytotoxicity to 
H596 NSCLC  Cells 

Bey et al., 
PNAS, 2007  

NQO1 

α-tubulin 
 NQO1 Enzyme Activity  
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NQO1-dependent lethality in human prostate cancer cells 

Conclusion 
 

NQO1 “bioactivates” ß-Lap 
 

NQO1 “inactivates” Menadione 
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NQO1-Mediated Reduction of β-Lap and Menadione 
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Stable Reduction 
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ß-Lapachone Induces a  Futile Cycle  of 
NQO1-Mediated NADH Oxidation 

Pink et. al., JBC, 2000  



Caspase-Independent  Apoptosis 

Nuclear  
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Endonuclease 
Activation? 

(CAD,Endo G, Acinus) 

DNA Damage 

  Repair 

ROS 

NQO1 
ß-Lapachone 
     (ß-Lap) ß-Lap 

Hydroquinone 

NAD(P)H NAD(P)+ 

ß-Lap 
Semiquinone O2 O2 

O2 O2 

ß-Lap Cytotoxicity: “Noncaspase-mediated Cell Death” 
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NQO1-dependent ROS formation 

Bentle et al., JBC, 2006; Cancer Res., 2007 



ß-lap  20 µM BAPTA-AM or 40 µM dicoumarol 

ß-lap 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

Fo
ld

 In
cr

ea
se

 

Time (min) 

β-Lap 

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50

Time (min) 

Fo
ld

 In
cr

ea
se

 

β-Lap 0 255 

0 255 

0 

0 

4.5 

4.5 

6 

6 

10.5 

10.5 

12 

12 

1.5 

1.5 

3 

3 

7.5 

7.5 9 

9 

13.5 

13.5 

Calcium Release After ß-Lap 

Tagliarino et al. JBC  276:19150, 2001  



Calcium Release After ß-Lap is from ER stores 

Tagliarino et al. JBC 276:19150, 2001  
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γ-H2AX 
NQO1-dependent, ß-Lap-induced DNA damage 

Comet Assays 

Bentle et al., JBC, 2006 



DNA Damage 
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ß-Lap Cytotoxicity: “Noncaspase-mediated Cell Death” 
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PARP in Action 

Adapted from http://parplink.u-strasbg.fr/index2.html 

Presenter
Presentation Notes
DNA can be damaged in a number of ways IR, UV, many chemo agents etc.  The body needs ways to protect 
Itself from this damage and either decide to reapair or die.  PARP is the most abundant nuclear eukaryotic enzyme
That serves as a DNA nick sensor.  It can bind to either single or double stranded DNA breaks where it becomes activated and with use NAD and cyclic ADP-ribose to form polymers on various target proteins and itself to recruit
The BER machinary to the site of damage.  NAD made from ATP.  3AB blocks here , Ab recognizes this etc.



Adapted from  Shall S. and de Murcia G. (2000) Mut. Res. 460, 1 - 15 

The Two Facets of PARP-1 Activation 
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Presenter
Presentation Notes
Explain the two facets of PARP activation the good and the bad..it is all about the thresholds
PARP is an enzyme that facilitates BER not part of the machinery.  
Focus on damage aspect, if the damage obtained is reasonable the cell can arrest and repair…mention PARP ADPRibosylation
On the other hand if the damage is extensive and the cell is undergoing further stress such as a decrease in NAD as we think may be occuring in ß-lap treated cells, then PARP will become hyper-activated leading to necrosis this death can be blocked by 3AB as well as the pathway above yeilding opposite results



MDA-MB-231 NQO1+ 

NQO1-dependent, PARP1 hyperactivation & nucleotide loss 

NQO1+  
MCF-7 Cells 

Bentle et al., JBC, 2006 



PARP hyperactivation is necessary for ß-lap-induced apoptosis 

Bentle et al.,  
JBC, 2006 

1    1  0.3  0.4 



30 min 60 min 120 min DMSO (120 min) 

30 min 60 min 120 min 
Neutral Comet  Assay (Measures DSBs)  

Alkaline Comet Assay  (Measures Total Breaks) 

(4uM ß-lap treatment) 

ß-Lap-induces DNA single strand breaks (SSBs) 

DMSO (120 min) 



Bentle et al., JBC, 2006  

Ca2+ chelation allows repair and recovery after ß-lap 



ß-Lap Cytotoxicity: “Noncaspase-mediated Cell Death” 
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µ-Calpain Translocation to the Nucleus 

MCF-7 cells 

DMSO 4 h 6 h 8 h + DC 

 MDA-468 
-NQ3 cells 

DMSO 6 h 8 h 10 h + DC 

Tagliarino et al.,  Cancer Biol Ther.,  2003  
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NQO1-dependent, Ca2+-regulated apoptosis inducing factor (AIF)  activation 

Bey et al., Unpub Data 



Ca2+ chelation by BAPTA-AM pre-loading blocks AIF activation  

Bey et al., Unpub Data 



ß-Lap Cytotoxicity: “Noncaspase-mediated Cell Death” 
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Maximum antitumor therapeutic window for treating NSCLC with ß-lap 
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Short pulses of ß-lap may increase its therapeutic index in treating 
NSCLC 

Bey et al., PNAS, 2007 
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ß-Lapachone delivery methodology development for specific cancer therapies 

I.       ß-Cyclodextrin  
          [Systemic administration] 
 

Polymer Polymer MicrospheresMicrospheres

Scanning electronScanning electron
micrographmicrograph
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HP-ß-CD greatly improves ß-lapachone antitumor efficacy  



Day 0 

ß-Lapachone antitumor responses using A549 cells 
improve using an orthotopic model  
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Dong et al. Fig. 4 B 
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