ß-Lapachone, a 'Kiss of death' therapy for cancer

David A. Boothman, Ph.D.

Laboratory of Molecular Stress Responses

Program in Cell Stress and Cancer Nanomedicine

Simmons Comprehensive Cancer Center University of Texas Southwestern Medical Center at Dallas

September 14, 2008

β-Lapachone (ß-Lap)

The Lapacho Tree *Tabebuia avellanedae*

ß-Lapachone radiosensitized human cancer, but not normal, cells

Radiosensitization Mechanism:

IR induces NQO1(xip3), the principal determinant of ß-lap cytotoxicity (Pink, et al., JBC, 2000).

Boothman et al., Cancer Res., 1989 Boothman et al., PNAS, 1990. 1993

NQO1: An Important Target for Cancer Therapy -Early marker of carcinogenes -Up-regulated after carcinogenic cell stres -Over-expressed in many cancers, as well a in angiogenic endothelial cells

Tumor-selective NQO1 Elevation

- 80% Breast Cancers, 10- to 20-fold **
- 70% Prostate Cancers, 10- to 20-fold **
- 60% Colon Cancers, 5- to 10-fold
- 90% Pancreatic Cancers, (J. Cullen, U. Iowa)
- 70% NSCLC (not SCLC), 20- to 40-fold **

** Will discuss isogenic models +NQO1

NQO1 Is Elevated In Nonsmall Cell Lung Cancer (NSCLC)

NQO1 Expression Confers Cytotoxicity to H596 NSCLC Cells

Bey et al., PNAS, 2007

NQO1-dependent lethality in human prostate cancer cells

NQO1-Mediated Reduction of β-Lap and Menadione

β-Lapachone Redox Cycling

B-Lapachone Induces a *Futile Cycle* of NOO1-Mediated NADH Oxidation

ß-Lap Cytotoxicity: "Noncaspase-mediated Cell Death"

NQO1-dependent ROS formation

Bentle et al., JBC, 2006; Cancer Res., 2007

Calcium Release After ß-Lap

ß-lap

β-Lap

0 -

TG Calcium Release After ß-Lap is from ER stores

ß-lap

Tagliarino et al. JBC 276:19150, 2001

NQO1-dependent, β-Lap-induced DNA damage Comet Assays γ-H2AX

Bentle et al., JBC, 2006

ß-Lap Cytotoxicity: "Noncaspase-mediated Cell Death"

PARP in Action

Adapted from http://parplink.u-strasbg.fr/index2.html

Ę

The Two Facets of PARP-1 Activation

Adapted from Shall S. and de Murcia G. (2000) Mut. Res. 460, 1 - 15

NQO1-dependent, PARP1 hyperactivation & nucleotide loss

PARP hyperactivation is necessary for ß-lap-induced apoptosis

Bentle et al., JBC. 2006

ß-Lap-induces DNA single strand breaks (SSBs)

Alkaline Comet Assay (Measures Total Breaks)

Neutral Comet Assay (Measures DSBs)

(4uM ß-lap treatment)

Ca²⁺ chelation allows repair and recovery after ß-lap

Bentle et al., JBC, 2006

ß-Lap Cytotoxicity: "Noncaspase-mediated Cell Death"

NQO1-dependent µ-calpain activation

p53 and atypical PARP1 cleavage were hallmarks of ß-lap cell death

Cyclin D1

34 kDa

Anti-NQO1/PI MCF-7 (8 h)

Control

MDA-468-NQ3 (10 h)

Tagliarino et al., Cancer Biol Ther., 2003

NQO1-dependent, Ca²⁺-regulated apoptosis inducing factor (AIF) activation

Bey et al., Unpub Data

Ca²⁺ chelation by BAPTA-AM pre-loading blocks AIF activation

Bey et al., Unpub Data

ß-Lap Cytotoxicity: "Noncaspase-mediated Cell Death"

Maximum antitumor therapeutic window for treating NSCLC with ß-lap

H596 NSCLC cells

Bey et al., PNAS, 2007

Short pulses of ß-lap may increase its therapeutic index in treating NSCLC

A549 NSCLC cells

Bey et al., PNAS, 2007

β-Lapachone Redox Cycling

B-Lapachone delivery methodology development for specific cancer therapies

Ksp

Millirods Ш. [Brachytherapy, prostate cancer]

Double Layer Millirods

III. Nanoparticles (cRGD micelles) [Lung Cancer, antiantiogenesis] -Use Lung cancer-specific ligands (e.g., $\alpha_v \beta_6$) (Brown)

Polymer Microspheres

micrograph

over 4 days

HP-ß-CD greatly improves ß-lapachone antitumor efficacy

ß-Lapachone antitumor responses using A549 cells improve using an orthotopic model

A549-Luc orthotopic model survival

ß-Lapachone is a potent radiosensitizer

A549 s.c. xenografts

 $\overline{=}$

Dong et al. Fig. 4 A

С

Eva Cataldo Julio Morales, Ph.D. Bhavani Shankar, Ph.D. Yonglong Zou, Ph.D.

Tomoyuki Mashimo, Ph.D.

Collaborators:

-Lindsey Mayo, Ph.D. (Case)
-David Danielpour, Ph.D. (Case)
-David Chen, Ph.D. (UTSW)
-Jerry Shay, Ph.D. (UTSW)
-Sandeep Burma, Ph.D. (UTSW)

-H Evans, Ph.D. -M Watanabe, Ph.D. -B Morgan, Ph.D. -D. Wilson, Ph.D. -C-R Yang, Ph.D.

(Case) (Kiyoto) (U. Maryland) (Case) (Case)

Acknowledgements

Collaborators

At UTSW: J. Gao, PhD J. Minna, Ph.D. M. Peyton, Ph.D.

W. Bornmann, PhDC. Thompson, MD, PhDC. Distelhorst, MDG. Dubyak, PhDK. Brown, PhDS. Ingalls

ERIK A. BEY MELISSA BENTLE KATE REINICKE