HEMODIALYSIS

A. PHYSIOLOGIC PRINCIPLES

1. Determinants of Clearance- Clearance, K, can be calculated for any solute (urea, K, PO4) as $K = \frac{Q_b \times (A-V/A)}{V}$ (Qb = blood flow, A = inlet concentration, V = return concentration)
 a. Dialyzer characteristics:
 • Dialyzer efficiency- Measure of small molecule clearance
 – Mostly driven by membrane surface area
 – Often expressed as mass transfer area coefficient (KoA). KoA = The maximum clearance of a solute by a dialyzer when blood flow (Qb) and dialysate flow (Qd) are approaching infinity (high-efficiency dialyzers KoA ~ <600mL/min versus low-efficiency with KoA <500mL/min)
 • Dialyzer permeability- Measure of pore size
 – Low-flux: β2-microglobulin clearance < 10mL/min with usual Rx; water flux K_{UF} <15mL/hr/mmHg
 – High-flux: β2-microglobulin clearance > 20mL/min with usual Rx; water flux K_{UF} >15mL/hr/mmHg
 b. Blood (Qb) and Dialysate (Qd) flow
 • Urea clearance approaches Qb when Qd is >2.5 X Qb

 ![Graphs showing Urea Clearance vs Qd](image)

 ![Graphs showing Urea Clearance vs Qd](image)

 c. Solute characteristics:
 • Small molecules (< 0.5kDa) with low volume of distribution (< 1L/kg), low protein