Oxidative Stress and efficacy of antioxidants in SLE

Visiting scholar: Yujin Ye (Sun Yat-Sen University & UTSW)
Mentor: Chandra Mohan
02/18/2013
Oxidative stress exists in many diseases, including SLE.

Free radicals/Reactive oxygen species (ROS)
--- superoxide (O_2^-), hydroxyl radicals (OH) and hydrogen peroxide (H_2O_2)
immune-cell dysfunction
autoantigen production
autoantibody reactivity

SLE

1. Oxidative status in SLE patients
2. Oxidative status in lupus mice
3. Efficacy of antioxidants in SLE

NADPH oxidase
myeloperoxidase
nitric oxide synthase
xanthine oxidase
lipoxygenases
superoxide dismutase
Glutathione peroxidase
catalse

Sulphydryl-bearing compounds:
cysteamine (CYST)
N-acetylcysteine (NAC)
glutathione

Apocynin
MnTBAP

Projects:

1. Oxidative status in SLE patients
2. Oxidative status in lupus mice
3. Efficacy of antioxidants in SLE
Oxidative status in SLE patients---lipid peroxidation

3. Previous works of our lab about metabolomic scan have showed: increased oxidized lipids (HODE,MDA) in the sera of SLE patients

Figure 1. SLE patients exhibited increased serum levels of MDA and HODE
Figure 2. Active SLE patients exhibited increased serum levels of anti-MDA-LDL-IgG(A) and anti-LDL-IgG(B) compared to healthy controls.

Figure 3. Active SLE patients exhibited increased serum levels of anti-9,13-HODE-IgG (A and B) but decreased anti-9,13-HODE-IgM (C and D) compared to healthy controls.

Figure 4. Active SLE patients exhibited increased serum levels of anti-POVPC-IgG (A), anti-ds-DNA-IgG(B) and ox-LDL-IC(C) compared to healthy controls.
Figure 5. Serum HODE levels were positively correlated with proteinuria and CRP (A and B). Serum anti-ox-LDL-IgG was positively correlated with SLEDAI, and negatively with C3 (C and D).

Figure 6. Anti-9-HODE-IgG was positively correlated with SLEDAI (A), and negatively with C4 (B). Anti-POVPC-IgG was negatively correlated with C4 (C).
Figure 1 – lupus mice exhibited significantly lower serum superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels versus healthy B6 controls. Serum potential antioxidant capacity (PAO), in contrast, was significantly increased in disease-prone mice.
Efficacy of antioxidants in SLE

1. Effects of Apocynin (a specific inhibitor of NADPH-oxidase)

Figure 2 – Autoantibodies in vehicle- and apocyanin-treated (p.o.). Apocyanin-treated mice trended toward less disease from D0 to D21 and D60 versus vehicle-treated controls.
2. The effects of MnTABP---SOD2 mimetic

Figure 3 – After 60 days of MnTBAP or vehicle control, NZM2410 mice exhibit significantly lower pathogenic autoantibody levels, proteinuria and BUN, although glomerulonephritis scores were not significantly different.
Figure 4--Splenic and renal MDA were reduced in MnTBAP-treated mice versus vehicle controls. Renal GSH levels were significantly elevated in MnTBAP controls.
Figure 5 – MnTBAP treatment significantly reduced CD5+B220+ (B-1a B cells), CD86+B220+ (plasmacytoid dendritic cells), and CD21/35+B220+ (marginal zone B cells) cell counts in the spleen.
Mechanism study

SOD mimetics

Xenobiotics Antioxidants Heavy Metals Radiation

Reactive Oxygen Species (ROS) Electrophiles

Initial Effect Accumulative Effect

Nrf2:INrf2

Activation of a battery of genes
Detoxification of chemicals and ROS and Prevention of free radical generation
Protection/Cell Survival

Oxidative Stress
Membrane damage
DNA adducts
Mutagenicity
Degeneration of tissues and premature aging
Apoptotic cell death
Cellular transformation and cancer

Fig. 1. Chemical and radiation exposure and coordinated induction of defensive genes.
Figure 6 WB of mice Kidney
Summary

• Active SLE patients exhibit significantly increased serum levels of oxidized lipids and IgG anti-oxidized-lipid autoantibodies, the current findings suggest that coordinate elevation of oxidized lipids, autoantibodies to these lipids, and immune complexes of these antigen-antibody components could serve as potential serum markers of disease activity in SLE.

• Lupus mice exhibit increased oxidative status and antioxidant treatment might eliminate the renal injury by inducing activities of defensive genes.
Future Plans for Long term Research at Sun Yat Sen University

Future Directions:
1. To see if these oxidative-lipids markers can be used to predict disease activity in longitudinal cohorts of SLE patients.
2. Trial of anti-oxidants in SLE patients.
Acknowledgements

Mentor: Chandra Mohan
- Tianfu Wu
- Yong Du
- Jie Han
- Mei Yan
- Jack Hutcheson
- Jacob Orme
- So Min
- Kamala Vanarsa

- Fiemu Nwariaku
- Wendeline Jongenburger
- Jay Schneider
- Tawanda Gumbo
- Maggie Pinson

- Yanmin Luo
- Hui Zhang
- Dihua Zhang
- Sui Peng
- Xiuyu Leng
- Peiqiang Su
- Changhua Zhang

Thank you!