Preeclampsia

- Hypertensive disorder unique to pregnancy
- Incidence: 6-8% of all pregnancies in the U.S
- Leading cause of maternal and neonatal morbidity and mortality
- Shallow implantation and reduced oxygenation of the placenta may lead to preeclampsia (Wang et al, Physiology, 2009)

![Diagram of normal and preeclampsia placenta with blood flow comparison]
Potential Roles of ERRγ in Pathogenesis of Hypertension

- ERRγ is an O$_2$-dependent transcription factor
- In studies of ERRγ knockout mice, ERRγ was found to regulate cardiac, gastric, and renal K$^+$ homeostasis via control of a number of hypertension-associated genes (Alaynick WA, et al, Mol Endocrinol, 2010).
- Placenta has the highest expression level of ERRγ among human reproductive tissues (Takeda et al., J. Biochem, 2009)
- ERRγ serves a critical role in the induction of aromatase (hCYP19) expression during human trophoblast differentiation (Kumar et al, Mol Endocrinol, 2011)
Objective

• **ERRγ regulation in human trophoblast**
 - Analyze the role of ERRγ in regulation of K⁺ channel genes and kallikrein in human placental cells in culture

• **ERRγ expression in preeclampsia**
 - Assess the expression of ERRγ in placentas from preeclamptic vs. normal pregnancies

• **ERRγ deficient pregnant mice**
 - Investigate the role of ERRγ in blood pressure regulation in ERRγ deficient pregnant mice
ERRγ mRNA & Protein Levels are Increased in Placentas from Preeclamptic vs. Control Women

ERRγ mRNA Expression

- Control: 1.0
- Preeclampsia: 2.5

*P = 0.0327

ERRγ Protein Expression

- Control: 0.5
- Preeclampsia: 1.5

*P = 0.0225
ERR_γ Expression & Activity are Related with Blood Pressure Regulation

ERR_γ deficiency
results in hypotension

Increased ERR_γ activity
causes hypertension in WT
Angiogenesis is Increased in Placentas of ERRγ Deficient vs WT Mice
VEGFR Signaling is Altered in Placentas of ERRγ Deficient vs WT Mice

Placental VEGF mRNA

- WT: n=8
- ERRγ Deficient: n=8

Serum sFlt-1

- WT: n=6
- ERRγ Deficient: n=6

*P=0.0028

*P=0.0087
Hyponatremia & Salt Wasting in ERRγ Deficient Pregnant Mice Result in Hypotension

Total Urine Na⁺

- WT
- ERRγ Deficient

Blood Na⁺ (18.5 dpc)

- WT: 140 ± 10
- ERRγ Deficient: 145 ± 10

Systolic Blood Pressure

- WT
- ERRγ Deficient

P-values:

- Total Urine Na⁺: *P=0.029*
- Blood Na⁺: *P=0.0112, *P=0.015, *P=0.025, *P=0.027, *P=0.028*
- Systolic Blood Pressure: *P=0.000*
Aldosterone Synthesis is Decreased in ERRγ Deficient vs. WT Pregnant Mice

Serum Aldosterone

- WT: 300 pg/ml
- ERRγ Deficient: 200 pg/ml

*P = 0.0289

Cyp11b1 mRNA in Adrenal Glands

- WT: 1.0
- ERRγ Deficient: 0.5

*P = 0.0382

Cyp11b2 mRNA in Adrenal Glands

- WT: 1.0
- ERRγ Deficient: 0.5

*P = 0.0169

ChIP-qPCR for ERRγ Binding to Cyp11b2

- Fold enrichment compared to IgG

- WT: 1.5
- ERRγ Deficient: 0.5

*P = 0.0419

Cyp11b2

- ERRE
- Exon 1

-242-AAGGTC-236
Summary

Preeclampsia

\[\uparrow \text{ERR} \gamma \]

Maternal

- Cyp11b1, Cyp11b2 \(\uparrow \)
- Aldosterone \(\uparrow \)
- Serum \(\text{Na}^+ \) \(\uparrow \)
- Urine \(\text{Na}^+ \) \(\downarrow \)

Placental

- sFlt-1 \(\uparrow \)
- Vegf \(\downarrow \)

?
Future Studies

• To investigate the role of ERRγ in placental angiogenesis by placenta-specific overexpression of ERRγ in transgenetic mice

• To analyze ERRγ expression in placentas of women with early vs late and mild vs severe preeclampsia
Acknowledgements

Mendelson’s Lab
• Carole R. Mendelson
• Premlata Kumar
• Jordan Latham
• Patricia Jimenez
• Alina Montalbano
• Chien-Cheng Chen
• Houda Benlhabib
• Lu Gao
• Jo Smith
• Lei Wang
• Wei Guo

Obstetrics
• Carmen Tudela
• James M. Alexander

O’Brien Center
• Michel Baum
• Lin Wang

Internal Medicine
• John Shelton

Grant Support
• NIH R01-DK031206

UTSW - Sun Yat-sen University
Post-Doctoral Trainee Exchange Program

Global health office
International office
THANK YOU!