Faculty and Research Interests
Faculty with Primary Appointments in Neuroscience
Joseph Takahashi, Ph.D.

The long-term goals of the Takahashi Laboratory are to understand the molecular and genetic basis of circadian rhythms in mammals and to use forward genetic approaches in the mouse as a tool for gene discovery for complex behavior.
Maria Chahrour, Ph.D.

The Chahrour Lab studies the molecular mechanisms underlying autism spectrum disorders (ASDs) by using a combination of human genetics, genomics, and animal modeling. They are identifying novel genes mutated in disease by next generation sequencing in families affected with ASDs, and are investigating the role of these genes in neuronal function using mouse models.
Carla Green, Ph.D.

The Green Laboratory studies the molecular mechanisms by which the circadian clock controls rhythmic processes within the cell, with a particular focus on post-transcriptional regulatory mechanisms.
Jay Gibson, Ph.D.


Researchers in the Gibson Laboratory use electrophysiological methods to study neocortical circuit development and plasticity. Group members focus on how circuits are altered in the mouse model of fragile X Syndrome.
Mark Henkemeyer, Ph.D.


The Henkemeyer Laboratory is focused on understanding cell-cell signaling mechanisms that help wire the brain and build neural circuits during development. Their research centers on a group of highly conserved membrane tethered ligand-receptor molecules, known as Ephrin and Eph, which transduce bidirectional cell-cell signals that can affect neuron migration, axon pathfinding, and synapse formation and plasticity.
Kim Huber, Ph.D.


The Huber Laboratory studies mechanisms of synaptic plasticity that occur during development and in the adult. We focus on the role of local translation in synaptic plasticity, and how genes linked with human mental disorders affect these processes. We use a combination of electrophysiology, imaging and biochemistry.
Jane Johnson, Ph.D.


The Johnson Lab focuses on the function of neural bHLH transcription factors to probe molecular mechanisms that control the balance of neural progenitor cell maintenance and differentiation, and the generation of neuronal diversity, particularly in the spinal cord. Her group also uses those factors to study the generation of neural cancers such as glioblastoma and neuroendocrine lung carcinoma.
Gena Konopka, Ph.D.


The Konopka Laboratory uses a combination of functional genomics, animal and human cellular modeling, and evolutionary comparisons. Her group's goal is to identify genes and molecular pathways that enhance cognitive function in the human brain, and whose dysfunction may play a role in disorders such as autism and schizophrenia.
Helmut Krämer, Ph.D.


The Krämer Laboratory uses Drosophila genetics to study the pathways that regulate the delivery of cargo from endosomes, phagosomes, and autophagosomes to lysosomes. His group also seeks to understand the role of glia cells in visual neurotransmission.
Helen Lai, Ph.D.


The Lai Lab studies the molecular and circuit mechanisms that generate pain, thermosensation, touch, and proprioception (the sense of limb and body position). In particular, we are investigating how proprioceptive information is differentially processed in the spinal cord and how that impacts proper motor function in mice. We use a variety of genetic, electrophysiology, and viral tracing techniques, as well as behavioral assays.
Weichun Lin, Ph.D.


The Lin Laboratory uses the vertebrate neuromuscular junction as a model to study synaptic biology. Our current research focuses on determining (1) how signals from the muscle regulate the differentiation of the motor nerve terminals, and (2) the contribution of myogenic activity to the maintenance of the synapses. Our techniques include mouse genetics, electrophysiology, electron microscopy, biochemistry, and molecular biology.
Colleen Noviello, Ph.D.

In conjunction with the Hibbs lab, the Noviello group is interested in structural characterization of autoimmunity against neuronal receptors. These receptors are critical to fast inhibitory neurotransmission, potentiation and modulation of excitatory transmission, and voluntary muscle movement. We work to understand autoantibody interference with these critical functions using a combination of biochemical, biophysical, structural and computational methods.
Allan-Hermann Pool, Ph.D.


The Pool Lab studies neural circuits that provide a sense of purpose and direction to animal behavior and develops targeted gene therapies to re-engineer their function. Current work in the Pool Lab focuses on one of these drive systems aiming to flesh out central circuits that mediate pain and pain relief states as well as develop viral and non-viral approaches to make these circuit nodes therapeutically addressable.
Brad Pfeiffer, Ph.D.


The Pfeiffer lab studies the consolidation and recall of memory via large-scale, high-density in vivo recordings of neural activity during free behavior in rodents, focusing on spatial navigation as a specific example of more general memory formation and use.
Todd Roberts, Ph.D.


The Roberts Lab studies the circuit and cellular mechanisms for vocal learning, how the brain encodes long-term memories during social interactions and uses auditory feedback to shape vocal behaviors. We are identifying the neural circuit mechanisms engaged as juvenile songbirds learn to imitate their father's song using two-photon imaging, optogenetics, and electrophysiological approaches.
Dean Smith, M.D., Ph.D.


The Smith Lab explores the mechanisms mediating volatile pheromone signaling in Drosophila. Image: localization of a lipid flippase required for normal pheromone sensitivity in the dendrites of a subset of olfactory neurons in the antenna.
Hume Stroud, Ph.D.

The Stroud lab investigates epigenetic regulation in nervous system heath and disease. We are particularly interested in understanding how disruption of these mechanisms lead to neurological disorders.
Ruhma Syeda, Ph.D.


The Syeda Lab is focused on studying mammalian mechanosensory and osmosensory proteins in health and diseased state. The lab’s toolkit includes combination of techniques used to study function of ion channels in cells and in minimal model systems including protein design, single molecule analysis, electrophysiology, ion channel expression, purification, and reconstitution in droplet lipid bilayers.
Jonathan Terman, Ph.D.


The Terman Lab explores the cellular, molecular, and biochemical mechanisms underlying cellular process formation, extension, and navigation. We are particularly interested in how axons, the cellular processes of neurons, find their targets and can be encouraged to regrow following injury or disease.
Lenora Volk, Ph.D.


The Volk lab studies the molecular and synaptic mechanisms of memory persistence. They use biochemistry and electrophysiology in combination with animal behavior to understand how memory encoding and use changes across development as well as how sleep facilitates memory persistence.
Wei Xu, Ph.D.


The Xu Lab aims to delineate brain circuits mediating basic cognitive processes including memory and executive control as well as elucidate neuronal principles operating in these circuits.
Shin Yamazaki, Ph.D.


The Yamazaki Laboratory studies circadian pacemaker structures that control feeding and locomotor activity rhythms as well as in vivo and environmental factors that influence circadian organization.
Gang Yu, Ph.D.


The Yu Laboratory studies the molecular and cellular basis of Alzheimer’s and related diseases. We use biophysics, biochemistry, and cell biology to understand the inner workings of the gamma-secretase complex.
Faculty with Secondary Appointments in Neuroscience
Seungwon Choi, Ph.D.

The Choi Lab aims to define the functional organization of ascending somatosensory circuitry and to use this knowledge to reveal how internal states and disorders of the nervous system shape our sense of touch and pain. We study these exciting areas using new mouse genetic tools in conjunction with advanced molecular, anatomical, physiological, and behavioral approaches.
William Dauer, M.D.


The Dauer Lab studies the pathogenesis of movement disorders, with a focus on dystonia and Parkinson disease. These studies also explore the mechanisms of selective neuronal vulnerability in human disease and aim to devise novel therapeutic strategies. We focus on human disease genes using cellular, molecular and mouse genetic approaches.
Marc Diamond, M.D.


The Diamond lab seeks to define fundamental molecular mechanisms that underlie progression of neurodegenerative diseases and thereby devise new therapeutics and diagnostics. They have defined prion mechanisms in vitro, in cells and in mice that appear to govern trans-cellular propagation of pathology for tau, synuclein, and potentially many other proteins that form pathological aggregates
Robert Greene, M.D., Ph.D.


The Greene lab studies the molecular and cellular mechanisms controlling behavioral state, with a focus on sleep homeostasis and function. Towards this end we employ behavioral and electrophysiological phenotyping of sleep/wake states to analyze the genetic, cellular and circuit signaling pathways responsible for their generation and control.
Daisuke Hattori, Ph.D.


The Hattori Lab studies how neural circuits integrate sensorimotor information, memory, and internal state to guide behavior. We use Drosophila as a primary model and employ a multidisciplinary approach that encompasses molecular genetics, neural recording, and behavioral experiments in order to uncover neural mechanisms that provide animals with behavioral flexibility.
Joachim Herz, M.D.


The Herz Lab studies the molecular basis of Alzheimer's disease and frontotemporal dementia. We specifically investigate how disruption of endosomal trafficking by Apolipoprotein E4 affects the synapse and how progranulin deficiency leads to lysosomal dysfunction, and then apply these insights to drug discovery.
Takashi Kitamura, Ph.D.


The research goal in the Kitamura Laboratory is to provide a biophysically- based mechanistic understanding of neural circuits, neural processes and memory engrams for learning and memory in the entorhinal-hippocampal circuits of rodent brain under normal and psychotic conditions, by applying cell-type specific in vivo calcium imaging, in vivo electrophysiology, transgenic mice, viral-tracing, and optogenetic manipulation.
Nan Li, Ph.D.


The Li's neuroimaging Lab (LNAB) aims to develop novel whole-brain MRI imaging methods to integrate molecular and system neuroscience and solve brain science problems in health and diseases. Specifically, the LNAB is interested in understanding the neural mechanisms of reward, decision, and learning in rodents.
Chen Liu, Ph.D.

The Liu lab investigates genetic and environmental factors leading to obesity and metabolic syndrome in children and adolescents. We conduct transcriptomic and genetic analyses in hypothalamic feeding neurons to identify risk factors behind early-onset obesity. The lab also studies the neural mechanisms underlying drug-induced metabolic syndrome with a focus on the central serotonin circuits.

Ram Madabhushi, Ph.D.


The Madabhushi lab studies how chromatin dynamics and epigenetic mechanisms regulate activity-dependent gene expression programs, and ultimately affect experience-driven adaptations in behavior. Our focus is on understanding how defects in these mechanisms could underlie the development of various neurological disorders and cancer.
Berge Minassian, M.D.


The Minassian lab focuses on cures for Lafora disease, a severe pediatric epilepsy, by studying the basic molecular mechanisms and developing possible therapeutics.
Yuki Obata, Ph.D.


The Obata Lab studies how intestinal neural circuits sense external stimuli (e.g., enteric pathogens) and regulate immunity and sickness behavior. We use a variety of experimental techniques, including viral tracing of enteric neurons, in vivo and ex vivo physiological assays, infection and gnotobiotic mouse models, and multi-omics technologies. The Obata Lab is also working to elucidate the molecular mechanisms of interoception in the context of the circadian clock.
Steven Shabel, Ph.D.


The Shabel lab investigates how individual differences in reward system functions determine propensity for depression and addiction-like behavior using a combination of electrophysiology, imaging, and behavior.
Peter Tsai, M.D., Ph.D.


The Tsai laboratory studies the molecular and circuit mechanisms underlying cognitive and behavioral disability in neurodevelopmental disorders such as autism, with a primary interest in the contribution of cerebellar dysfunction to neurobehavioral impairment.
Adjunct Faculty
Ryan Hibbs, Ph.D.


The Hibbs Laboratory studies the mechanisms of ligand-gated ion channel function at the atomic scale, using biochemistry, electrophysiology, and X-ray crystallography.
Tae-Kyung (TK) Kim, Ph.D.


The Kim Laboratory studies how sensory stimulation can be accurately translated into cellular and behavioral plasticity through genetic and epigenetic mechanisms. We focus on the role of various types of long non-coding RNAs in brain development and function, and neuronal activity-regulated epigenetic mechanisms underlying cognitive diseases.