Faculty and Research Interests

Faculty with Primary Appointments in Neuroscience

Joseph Takahashi, Ph.D.

Joseph Takahashi

The long-term goals of the Takahashi Laboratory are to understand the molecular and genetic basis of circadian rhythms in mammals and to use forward genetic approaches in the mouse as a tool for gene discovery for complex behavior.

Maria Chahrour, Ph.D.

Maria Chahrour

The Chahrour lab studies the molecular mechanisms underlying autism spectrum disorders (ASDs) by using a combination of human genetics, genomics, and animal modeling. They are identifying novel genes mutated in disease by next generation sequencing in families affected with ASDs, and are investigating the role of these genes in neuronal function using mouse models.

Carla Green, Ph.D.

Carla Green

The Green Laboratory studies the molecular mechanisms by which the circadian clock controls rhythmic processes within the cell, with a particular focus on post-transcriptional regulatory mechanisms.

Jay Gibson, Ph.D.

Jay Gibson
diagram

Researchers in the Gibson Laboratory use electrophysiological methods to study neocortical circuit development and plasticity. Group members focus on how circuits are altered in the mouse model of fragile X Syndrome.

Ryan Hibbs, Ph.D.

Ryan Hibbs
diagram

The Hibbs Laboratory studies the mechanisms of ligand-gated ion channel function at the atomic scale, using biochemistry, electrophysiology, and X-ray crystallography.

Mark Henkemeyer, Ph.D.

Ryan Hibbs
diagram

The Henkemeyer Laboratory is focused on understanding cell-cell signaling mechanisms that help wire the brain and build neural circuits during development. Their research centers on a group of highly conserved membrane tethered ligand-receptor molecules, known as Ephrin and Eph, which transduce bidirectional cell-cell signals that can affect neuron migration, axon pathfinding, and synapse formation and plasticity.

Kim Huber, Ph.D.

Kim Huber
diagram

The Huber Laboratory studies mechanisms of synaptic plasticity that occur during development and in the adult. We focus on the role of local translation in synaptic plasticity, and how genes linked with human mental disorders affect these processes. We use a combination of electrophysiology, imaging and biochemistry.

Jane Johnson, Ph.D.

Jane Johnson
diagram

The Johnson Lab focuses on the function of neural bHLH transcription factors to probe molecular mechanisms that control the balance of neural progenitor cell maintenance and differentiation, and the generation of neuronal diversity, particularly in the spinal cord. Her group also uses those factors to study the generation of neural cancers such as glioblastoma and neuroendocrine lung carcinoma.

Gena Konopka, Ph.D.

Gena Konopka
diagram

The Konopka Laboratory uses a combination of functional genomics, animal and human cellular modeling, and evolutionary comparisons. Her group's goal is to identify genes and molecular pathways that enhance cognitive function in the human brain, and whose dysfunction may play a role in disorders such as autism and schizophrenia.

Helmut Krämer, Ph.D.

Helmut Krämer
diagram

The Krämer Laboratory uses Drosophila genetics to study the pathways that regulate the delivery of cargo from endosomes, phagosomes, and autophagosomes to lysosomes. His group also seeks to understand the role of glia cells in visual neurotransmission.

Helen Lai, Ph.D.

Helen Lai
diagram

The Lai Lab studies the molecular and circuit mechanisms that generate pain, thermosensation, touch, and proprioception (the sense of limb and body position). In particular, we are investigating how proprioceptive information is differentially processed in the spinal cord and how that impacts proper motor function in mice. We use a variety of genetic, electrophysiology, and viral tracing techniques, as well as behavioral assays.

Weichun Lin, Ph.D.

Weichun Lin
diagram

The Lin Laboratory uses the vertebrate neuromuscular junction as a model to study synaptic biology. Our current research focuses on determining (1) how signals from the muscle regulate the differentiation of the motor nerve terminals, and (2) the contribution of myogenic activity to the maintenance of the synapses. Our techniques include mouse genetics, electrophysiology, electron microscopy, biochemistry, and molecular biology.

Brad Pfeiffer, Ph.D.

Brad Pfeiffer

The Pfeiffer lab studies the consolidation and recall of memory via large-scale, high-density in vivo recordings of neural activity during free behavior in rodents, focusing on spatial navigation as a specific example of more general memory formation and use.

Todd Roberts, Ph.D.

Todd Roberts
diagram

The Roberts Lab studies the circuit and cellular mechanisms for vocal learning, how the brain encodes long-term memories during social interactions and uses auditory feedback to shape vocal behaviors. We are identifying the neural circuit mechanisms engaged as juvenile songbirds learn to imitate their father's song using two-photon imaging, optogenetics, and electrophysiological approaches.

Dean Smith, M.D., Ph.D.

Dean Smith
diagram

The Smith Lab explores the mechanisms mediating volatile pheromone signaling in Drosophila. Image: localization of a lipid flippase required for normal pheromone sensitivity in the dendrites of a subset of olfactory neurons in the antenna.

Hume Stroud, Ph.D.

Hume Stroud, Ph.D.

The Stroud lab investigates the molecular mechanisms of gene regulation in nervous system development, regeneration and health. We are particularly interested in understanding how disruption of these mechanisms lead to neurological disorders.

Ruhma Syeda, Ph.D.

Ruhma Syeda, Ph.D.
research

The Syeda Lab is focused on studying mammalian mechanosensory and osmosensory proteins in health and diseased state. The lab’s toolkit includes combination of techniques used to study function of ion channels in cells and in minimal model systems including protein design, single molecule analysis, electrophysiology, ion channel expression, purification, and reconstitution in droplet lipid bilayers.

Jonathan Terman, Ph.D.

Jonathan Terman
diagram

The Terman Lab explores the cellular, molecular, and biochemical mechanisms underlying cellular process formation, extension, and navigation. We are particularly interested in how axons, the cellular processes of neurons, find their targets and can be encouraged to regrow following injury or disease.

Lenora Volk, Ph.D.

Lenora Volk
volk-diagram

The Volk lab studies the molecular and synaptic mechanisms of memory persistence. They use biochemistry and electrophysiology in combination with animal behavior to understand how memory encoding and use changes across development as well as how sleep facilitates memory persistence.

Wei Xu, Ph.D.

Wei Xu
diagram

The Xu Lab aims to delineate brain circuits mediating basic cognitive processes including memory and executive control as well as elucidate neuronal principles operating in these circuits.

Shin Yamazaki, Ph.D.

Shin Yamazaki
diagram

The Yamazaki Laboratory studies circadian pacemaker structures that control feeding and locomotor activity rhythms as well as in vivo and environmental factors that influence circadian organization.

Gang Yu, Ph.D.

Gang Yu
diagram

The Yu Laboratory studies the molecular and cellular basis of Alzheimer’s and related diseases. We use biophysics, biochemistry, and cell biology to understand the inner workings of the gamma-secretase complex.

 

Faculty with Secondary Appointments in Neuroscience

William Dauer, M.D.

The Dauer lab studies the pathogenesis of movement disorders, with a focus on dystonia and Parkinson disease. These studies also explore the mechanisms of selective neuronal vulnerability in human disease and aim to devise novel therapeutic strategies. We focus on human disease genes using cellular, molecular and mouse genetic approaches.

Marc Diamond, M.D.

Marc Diamond
diagram

The Diamond lab seeks to define fundamental molecular mechanisms that underlie progression of neurodegenerative diseases and thereby devise new therapeutics and diagnostics. They have defined prion mechanisms in vitro, in cells and in mice that appear to govern trans-cellular propagation of pathology for tau, synuclein, and potentially many other proteins that form pathological aggregates

Robert Greene, M.D., Ph.D.

Robert Greene
diagram

The Greene lab studies the molecular and cellular mechanisms controlling behavioral state, with a focus on sleep homeostasis and function. Towards this end we employ behavioral and electrophysiological phenotyping of sleep/wake states to analyze the genetic, cellular and circuit signaling pathways responsible for their generation and control.

Daisuke Hattori, Ph.D.

The Hattori Lab studies how neural circuits integrate sensorimotor information, memory, and internal state to guide behavior. We use Drosophila as a primary model and employ a multidisciplinary approach that encompasses molecular genetics, neural recording, and behavioral experiments in order to uncover neural mechanisms that provide animals with behavioral flexibility.

Joachim Herz, M.D.

Joachim Herz
diagram

The Herz Lab studies the molecular basis of Alzheimer's disease and frontotemporal dementia. We specifically investigate how disruption of endosomal trafficking by Apolipoprotein E4 affects the synapse and how progranulin deficiency leads to lysosomal dysfunction, and then apply these insights to drug discovery.

Takashi Kitamura, Ph.D.

Takashi Kitamura, Ph.D.
Takashi Kitamura research image

The research goal in the Kitamura Laboratory is to provide a biophysically- based mechanistic understanding of neural circuits, neural processes and memory engrams for learning and memory in the entorhinal-hippocampal circuits of rodent brain under normal and psychotic conditions, by applying cell-type specific in vivo calcium imaging, in vivo electrophysiology, transgenic mice, viral-tracing, and optogenetic manipulation.

Nan Li, Ph.D.

Nan Li, Ph.D.

The Li's neuroimaging Lab (LNAB) aims to develop novel whole-brain MRI imaging methods to integrate molecular and system neuroscience and solve brain science problems in health and diseases. Specifically, the LNAB is interested in understanding the neural mechanisms of reward, decision, and learning in rodents.

Chen Liu, Ph.D.

Chen Liu

The Liu lab investigates genetic and environmental factors leading to obesity and metabolic syndrome in children and adolescents. We conduct transcriptomic and genetic analyses in hypothalamic feeding neurons to identify risk factors behind early-onset obesity. The lab also studies the neural mechanisms underlying drug-induced metabolic syndrome with a focus on the central serotonin circuits.

Chen Liu research image

Ram Madabhushi, Ph.D.

Ram Madabhushi
diagram

The Madabhushi lab studies how chromatin dynamics and epigenetic mechanisms regulate activity-dependent gene expression programs, and ultimately affect experience-driven adaptations in behavior. Our focus is on understanding how defects in these mechanisms could underlie the development of various neurological disorders and cancer.

Berge Minassian, M.D.

Berge Minassian
diagram

The Minassian lab focuses on cures for Lafora disease, a severe pediatric epilepsy, by studying the basic molecular mechanisms and developing possible therapeutics.

Steven Shabel, Ph.D.

Dr. Steven Shabel
Shabel Lab Research Images

The Shabel lab investigates how individual differences in reward system functions determine propensity for depression and addiction-like behavior using a combination of electrophysiology, imaging, and behavior.

Peter Tsai, M.D., Ph.D.

Peter Tsai
diagram

The Tsai laboratory studies the molecular and circuit mechanisms underlying cognitive and behavioral disability in neurodevelopmental disorders such as autism, with a primary interest in the contribution of cerebellar dysfunction to neurobehavioral impairment.

 

Adjunct Faculty

Tae-Kyung (TK) Kim, Ph.D.

TK Kim
diagram

The Kim Laboratory studies how sensory stimulation can be accurately translated into cellular and behavioral plasticity through genetic and epigenetic mechanisms. We focus on the role of various types of long non-coding RNAs in brain development and function, and neuronal activity-regulated epigenetic mechanisms underlying cognitive diseases.

Julian Meeks, Ph.D.

Julian Meeks
diagram

The Meeks Laboratory studies the neural mechanisms underlying pheromone-mediated social and reproductive behaviors in mice. Our research focuses on synaptic interactions between excitatory and inhibitory neurons in the accessory olfactory bulb, and how those interactions sculpt information flowing through this circuit.