From gene discovery to a first-in-class drug

FDA approval of belzutifan culminates 25-year journey of scientific innovation at UT Southwestern

By Deborah Wormser

A first-in-kind kidney cancer drug developed from laboratory and translational studies conducted at UT Southwestern recently received approval from the Food and Drug Administration, providing a new treatment for patients with familial kidney cancer.

Merck’s belzutifan grew out of the discovery at UT Southwestern of the protein hypoxia-inducible factor 2-alpha (HIF-2α), which was found to fuel the growth of kidney and other cancers. HIF-2α was discovered by Steven McKnight, Ph.D., Professor of Biochemistry, who collaborated in the early stages of the research. The drug, once called FT2977, was developed based on a UT Southwestern discovery. Further drug development efforts were conducted by the spinoff company Peloton Therapeutics, which was launched on the UT Southwestern campus and eventually acquired by Merck.

Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Pioneering PULSAR-integrated radiotherapy with immunotherapy

By Patrick McGee

In a move that will increase access to clinical trials for patients with sickle cell disease, UT Southwestern has become a founding member of the new Sickle Cell Disease Clinical Trials Network (SCD CTN). The network’s goal is to bring treatments and curative options to people suffering from this potentially life-shortening red blood cell disorder.

The American Society of Hematology (ASH), which created the network, is the world’s largest professional society of clinicians and researchers focused on blood disorders. Under the leadership of Patrick Leavy, M.D., Professor of Pediatrics at UT Southwestern, a collaborative North Texas clinical trial unit was developed and invited to be a participating site.

The North Texas unit includes Children’s Medical Center Dallas, William P. Clements Jr. University Hospital, Parkland Health & Hospital System, Medical City Dallas, and Cook Children’s Health Care System in Fort Worth.

UT Southwestern’s inclusion in the national network underscores its commitment as an academic medical center to bring the latest treatments to underserved populations. Sickle cell disease impacts Black Americans the hardest, with the genetic disease occurring in 1 out of every 365 African American births.

The 10-site Sickle Cell Disease Clinical Trials Network will coordinate patient enrollment in clinical trials at several academic medical centers.

Please see NETWORK on page 4

Patrick Leavy, M.D.

Alicia Nero, M.D.

Forbes names UT Southwestern top health care employer in Texas

By Patrick Wancorcz

UT Southwestern has been recognized as the top health care employer in Texas, one of the top 10 employers across all industries in the state, and among the nation’s best-in-state employers nationally by Forbes/ NCAA.

Recommendations from employers, as well as indirect recommendations from other workers within the same industries, are reviewed along with survey results that explore work conditions, salary, growth potential, and diversity among selection factors. The Best-In-State Employers 2021 is created through a survey of 86,000 U.S. employees across 25 industry sectors that consider employment opportunities at the local and national level. This is the second year UT Southwestern has been recognized. Earlier this year, UT Southwestern ranked No. 3 on the Forbes list of America’s Best Employers For Women 2021 and was named No. 1 in the nation on Forbes’ list of America’s Best Employers For New Graduates, placing it in the top 1% and highest among academic medical centers.

UT Southwestern is committed to offering employees opportunities and innovative support to enable them to perform at their best and grow their careers. Among highlights, UT Southwestern has established online and in-person training and mentoring programs for future management and leadership roles; technical skills training to adapt and master new software and technologies; and resources for employees in the areas of health and wellness, including...

Please see BEST EMPLOYER on page 7

Forbes’ list of 100 employers across all industries in the state, and among the nation’s best-in-state employers nationally by Forbes/ NCAA.

Please see NETWORK on page 4

By Deborah Wormser

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.

**UT Southwestern campus and eventually acquired by Merck. Drs. McKnight and Russell first identified HIF-2α in the 1990s. For many years, HIF-2α was considered undruggable until two more UT Southwestern scientists – Richard Bruick, Ph.D., former Professor of Biochemistry, and Kevin Gardner, Ph.D., former Professor of Biophysics, and the structural and biochemical work showing that the HIF-2α molecule contains a pocket that is potentially druggable. The two scientists then identified multiple compounds that fit into this pocket and inhibited the activity of HIF-2α.

Please see BELZUTIFAN on page 4

Steven McKnight, Ph.D.
These treatment models are being tested in multiple prospective clinical trials now open for enrollment or soon to launch.

“We unexpectedly found in these experiments that the time split between large, focused doses of radiotherapy will predict whether a certain class of immunotherapy drugs will work,” said Robert Timmerman, M.D., Professor of Radiation Oncology and a member of the Harold C. Simmons O’Donnell Jr. Brain Institute and Radiation Oncology and the Lyda Hill Institute.

Plans are underway to share expertise and data with other academic institutions, including Massachusetts General Hospital in Boston.

Artificial intelligence experts from Radiation Oncology and the Lyda Hill Institute are developing machine-learning algorithms, while radiation oncologists use the machines’ combined radiation and imaging abilities to make treatments as precise as possible, hitting the tumors and sparing healthy tissue.

Plans are underway to share expertise and data with other academic institutions, including Massachusetts General Hospital in Boston.

Dr. Timmerman holds the Effie Marie Cain Distinguished Chair in Cancer Therapy Research.

More online: Read the full story in the newsroom at utsouthwestern.edu/newsroom.

PULSAR, a new radiotherapy for cancer, is customizable to the type and size of the cancer and also adapts dosage to how the tumor responds to treatment.

“Using artificial intelligence, the team can replan cancer treatment in 30 minutes instead of the typical five to seven days,” said Dr. Timmerman, Interim Chair and Medical Director of Radiation Oncology and a member of the Harold C. Simmons O’Donnell Jr. Brain Institute and Simmons Cancer Center. "The equipment and expertise under one roof should break new ground in fighting cancer.”

Collaborating on the PULSAR project are faculty from the Department of Radiation Oncology, Immunology, Pathology, and Neurological Surgery and members of the Peter O’Donnell Jr. Brain Institute and Simmons Cancer Center. PULSAR is being pioneered in a 71,000-square-foot expansion of Radiation Oncology services with seven new machines that image tumors and treat them with radiation. (See related story on page 3.)

Artificial intelligence experts from Radiation Oncology and the Lyda Hill Institute are developing machine-learning algorithms, while radiation oncologists use the machines’ combined radiation and imaging abilities to make treatments as precise as possible, hitting the tumors and sparing healthy tissue.

Plans are underway to share expertise and data with other academic institutions, including Massachusetts General Hospital in Boston.

Dr. Timmerman holds the Effie Marie Cain Distinguished Chair in Cancer Therapy Research.

More online: Read the full story in the newsroom at utsouthwestern.edu/newsroom.

Findings

UTSW researchers discovered that PULSAR radiation could bolster systemic immunotherapy benefit, even in situations where immunotherapy alone was not effective.

In preclinical testing, they investigated one of the most common classes of immunotherapy, a PD-L1 checkpoint inhibitor, along with PULSAR radiation. This combination acted like a vaccination against tumors implanted in mice.

Splitting two pulses of radiation by 10 days was much more effective in combination with the checkpoint drug than the typical daily radiation schedule found in research. Next, the team will test this therapy strategy in patients through multiple open and pending clinical trials.
UT Southwestern Medical Center recently completed its 71,000-square-foot expansion of Radiation Oncology services, heralding a new avenue of treatment to patients called adaptive therapy.

“Over the past few years, UT Southwestern has been a recognized leader in the field of radiation oncology, advancing research in stereotactic ablative radiotherapy, immunotherapy, and personalized patient care through the use of artificial intelligence,” said Hak Choy, M.D., former Chair of Radiation Oncology. “With the opening of our expanded building, we’re preparing to enter an exciting phase in the field of radiation oncology – adaptive therapy.”

Radiation Oncology is a key component of UT Southwestern’s Harold C. Simmons Comprehensive Cancer Center – one of 31 designated comprehensive cancer centers in the U.S. by the National Cancer Institute, a member of the elite 31-member National Comprehensive Cancer Network, with its cancer programs nationally ranked among the top 25 by U.S. News & World Report.

UT Southwestern’s Radiation Oncology facility, with total combined space of more than 150,000 square feet, features a collection of the most sophisticated treatment machines. Coupled with image-guided therapy, the equipment is versatile and capable of treating an array of cancer malignancies under one roof. The additional “smart” treatment procedure rooms, patient support rooms, two children’s areas, a quick-serve cafe, and more than a dozen advanced imaging/treatment machines including:

- One GammaPod treatment machine for breast cancer
- One Xstrahl treatment machine
- One high-dose-rate brachytherapy suite
- One MR simulator
- One RefleXion machine, which incorporates PET imaging with radiotherapy
- Two CT simulators/ABO
- One MRI simulator
- One high-dose-rate brachytherapy suite
- One Xstrahl treatment machine
- One Gamma3d treatment machine for breast cancer

“With the opening of our expanded building, we’re preparing to enter an exciting phase in the field of radiation oncology,” said Hak Choy, M.D., former Chair of Radiation Oncology. “With the ability to monitor treatment progress due to biological and functional changes, the adaptive machines not only provide precise image-guidance to tumors, they can realign and reshape radiation beams to the borders of the tumor as it changes, meaning we’ll be able to better target tumors and avoid healthy tissue,” said Robert Timmerman, M.D., Professor and Interim Chair of Radiation Oncology.

“Adaptive therapy today is focused on conforming radiation to changing anatomy to make treatment more precise, said Steve Jiang, Ph.D., Professor and Vice Chair of Radiation Oncology. “In the near future, we’ll have more intelligent adaptation based on biomarkers,” said Dr. Jiang. “We’ll be able to prescribe different levels of radiation to patients based on their unique response to treatment and what models and past data for similar conditions suggest are optimum.”

Dr. Jiang holds the Effie Marie Cain Distinguished Chair in Cancer Therapy Research. Dr. Timmerman holds the Effie Marie Cain Distinguished Chair in Cancer Therapy Research.

More online: Read the full story on Center Times Plus at southwestern.edu/ctplus, which includes a video highlighting the new space and radiation oncology technology.

The expanded Radiation Oncology building contains two Ethos machines, which incorporate CT scans and artificial intelligence with radiotherapy.
Belzutifan

Continued from page 1

“The history of belzutifan’s development demonstrates the value of cross-disciplinary collaborations at academic medical centers and how that can translate to new treatments for diseases,” said Dr. Russell, former Vice Provost and Dean of Research. “It also underscores the value of investing in basic science education. These breakthroughs might be one of the most important components for resetting the clock.”

For decades, researchers have known that a brain region called the suprachiasmatic nucleus (SCN) controls circadian rhythms, the various cycles of activity that typically run on a 24-hour basis. These rhythms are entrained by light, Dr. Takahashi explained; cells in the SCN respond to signals relayed by the retina, the eye’s light-sensitive tissue. However, the molecular basis of this phenomenon is not well understood. To learn more about how the SCN sets circadian rhythms, the researchers used a technique called single nucleus sequencing to examine gene expression in cells in mice after the animals were exposed to light. Dr. Takahashi and his colleagues found that three different subpopulations of SCN neurons respond to light stimulation. A common thread tying these subtypes together was increased activity in genes that respond to Neuronal PAS Domain Protein 4 (Npas4), the protein made by the Npas4 gene.

When the research team exposed mice engineered to lack Npas4 to light, it dampened the response of hundreds of circadian clock genes. In an additional study using a mouse model that lengthened about an extra hour, to nearly 25 hours instead of the normal 24. Together, Dr. Takahashi said, these results suggest that Npas4 is a master regulator of many light-induced genes, a key piece in the puzzle of how the circadian system works.

The more researchers learn about the molecular underpinnings of the circadian clock, Dr. Takahashi added, the more they may be able to manipulate it to improve health and well-being— for example, to ease jet lag or help shift workers stay awake to match their work cycles. It could also lead to new treatments for disorders marked by abnormal sleep/wake cycles.

This work was a collaboration with the laboratory of Genevieve Knopka, Ph.D., Associate Professor in the Department of Neuroscience and Director of the UTSW Neurogenomics Core.

Dr. Knopka is a Jon Heifgen Scholar in Autism Research.

Dr. Takahashi holds the Lloyd B. Sands Distinguished Chair in Neuroscience.
Cells that keep the heart beating can regenerate, study reveals

By Christen Browner

Specialized cells that conduct electricity to keep the heart beating have a previously unrecognized ability to regenerate in the days after birth, a new study in mice by UT Southwestern researchers suggests. The finding, published online in the Journal of Clinical Investigation, could eventually lead to treatments for heart rhythm disorders that avoid the need for invasive pacemakers or drugs by instead encouraging the heart to heal itself.

“Patients with arrhythmias don’t have a lot of great options,” said study leader Nikhil V. Munshi, M.D., Ph.D., a cardiologist and Associate Professor of Internal Medicine, Molecular Biology, and in the Eugene McDermott Center for Human Growth and Development. “Our findings suggest that someday we may be able to elicit regeneration from the heart itself to treat these conditions.”

Dr. Munshi studies the cardiac conduction system, an interconnected system of specialized heart muscle cells that generate electrical impulses and transmit these impulses to make the heart beat. Although studies have shown that nonconducting heart muscle cells have some regenerative capacity for a limited time after birth – with many discoveries in this field led by UTSW scientists – conducting cells called nodal node cells lose stem cell-like qualities before birth, giving them negligible regenerative properties. However, Dr. Munshi explained, their regenerative abilities had never been directly tested because there was no way to eliminate only nodal cells in animal models to spur regeneration.

To solve this problem, Dr. Munshi and his colleagues used genetic engineering to develop mice whose atrioventricular (AV) node cells – located near the intersection of the heart’s four chambers – did not respond well when they were fed the breast cancer drug tamoxifen. In adult mice of this strain that were given tamoxifen, tissue samples and electrocardiograms revealed progressive heart damage stemming from the loss of AV node cells in the following weeks and months. However, when neonatal mice were dosed, heart function appeared to be completely normal in one-third of the animals a month later. Taking a closer look, the researchers performed electrocardiograms on newborn mouse models of AV node failure every couple of days after tamoxifen treatment. These tests revealed an initial injury to the heart that gradually healed itself in many of the animals. Although tissue examination showed that this healing didn’t result in a completely normal heart in adulthood, it was sufficient for the mice to have regular heart rhythms.

Intriguingly, further investigation showed that nonmuscle heart cells were the predominant cell type that proliferated after the nodal cells died. These cells appeared to modulate production of proteins that help heart cells make electrical connections.

The reasons why these proteins increased and why only about one-third of the animals showed regeneration remain unclear, Dr. Munshi said. He and his colleagues plan to continue studying the molecular mechanisms behind this phenomenon to gain more knowledge that could eventually lead to a drug that can stimulate the regeneration pathway on demand to regrow damaged nodes in arrhythmia patients.

Ovarian cancer patients show high levels of protein aggregates in magenta (left), which coincides with low levels of mono(ADP-ribose) (MARR), compared with low levels of protein aggregates (right) and high levels of MARR. The study found that high levels of MARR and low levels of protein aggregates correlate with ovarian cancer cell survival.

By Patrick McGee

UT Southwestern researchers have discovered what appears to be an Achilles’ heel in ovarian cancers, as well as new biomarkers that could point to which patients are the best candidates for new treatments.

The finding, published in Cell, was made in part using a research tool invented in a UTSW lab in the Cecil H. and Ida Green Center for Reproductive Biology Sciences. The research was led by W. Lee Kraus, Ph.D., Professor of Obstetrics and Gynecology and Pharmacology.

“Many researchers are trying to find dependencies in cancers by asking why a cancer cell amplifies a gene, increases the levels of a protein, or upregulates a critical cellular pathway. These changes give that cancer a selective advantage, but at the same time they can become an Achilles’ heel – something that, if the alteration was blocked, would kill the cancer or stop its growth,” said Dr. Kraus, also Director of the Cecil H. and Ida Green Center for Reproductive Biology Sciences and a W. Lee Kraus, Ph.D., member of the Harold C. Simmons Comprehensive Cancer Center.

The research team, including lead author Sridevi Challa, Ph.D., a postdoctoral researcher in Dr. Kraus’ lab, found that ovarian cancers massively amplify the enzyme NMNAT-2, which makes NAD+ (NAD+ is the substrate for a family of enzymes called PARPs, which chemically modify proteins with ADP-ribose) and NMNAT-2 as potential biomarkers for ovarian cancers, enabling clinicians to determine which cancer patients may respond well to treatment. Ovarian cancer patients might also benefit from an inhibitor for PARP-16, which blocks ribosome (mono(ADP-ribose) synthesis.)

Dr. Kraus, an expert in PARPs, said medical science has had great success in developing FDA-approved PARP inhibitors, and an inhibitor for PARP-16 is likely.

“No PARP-16 inhibitors are currently in clinical trials, but labs in academia and the pharmaceutical industry are developing specific and potent inhibitors of PARP-16. Such a drug could be an effective therapeutic for treating ovarian cancers,” he said.

“Dr. Kraus’ research is not just a great advance in basic science. It has real promise for clinicians investigating and cancer care practitioners because it shows how our faculty builds on their findings to break new ground,” said Carlos L. Arteaga, M.D., Director of the Simmons Cancer Center.

More online: Read the full story in the newsroom at utsouthwestern.edu/newsroom.

RedBird project on target to open in mid-2022

Progress continues on construction of UT Southwestern Medical Center at RedBird, a two-story, 180,000-square-foot center in the redeveloped RedBird Mall in southern Dallas County that is scheduled to open in summer 2022. Here are some highlights:

- Exterior walls recently were finished, with construction targeted for completion next summer.
- Outpatient clinical and support services will include primary care, diabetes management, cardiology, neurology/neurosurgery, urology, cancer, medical oncology, mammography, advanced imaging, infusion therapy, laboratory services, and a pharmacy.
- Pediatric services, provided through Children’s Health by members of the UT Southwestern Pediatric Group, are being evaluated, with an anticipated opening date in 2023.

RedBird serves as an anchor for Reimagine RedBird, a revitalization initiative converting the historic RedBird Mall into a mixed-use destination featuring restaurants, businesses, and luxury apartments.

By Remekia Owens

Exterior wall construction was recently finished at UT Southwestern Medical Center at RedBird.
Grad student studying neurotransmitters receives Ida M. Green Award

By Carol Marie Cooper

Karolina Stepien, who studies how the brain's neurotransmitters are released from one neuron to send a signal to another, has been named winner of the 2021 Ida M. Green Award. This honor is given each year by Southwestern Medical Foundation to a female student in UT Southwestern's Graduate School of Biomedical Sciences based on her scientific accomplishments and commitment to the UT Southwestern community.

Ms. Stepien said she was extremely happy to receive the award, which is one of the most prestigious for UT SW graduate students.

"I like that there is an award that specifically recognizes a woman," she said. "In general, women have had fewer chances than men in the sciences, so it's very special." Her basic research into how powerful neurotransmitter chemicals housed within neurons, such as dopamine or serotonin, interact with their receptors to influence behavior continues to be of interest as she seeks to understand the mechanisms of neurotransmitter release and embody the innovative spirit and rich legacy of Ida Green."

Ms. Stepien, winner of the 2021 Ida M. Green Award, studies how brain neurotransmitters work in hopes of uncovering new treatments for neurodegenerative disorders. In 2014 as an exchange student in her BioLAB program, which provides Polish master's and doctoral students in the biological sciences a one-year paid internship to study at UT Southwestern or other American institutions. At the time, Ms. Stepien was focused on biotechnology, the subject she received her undergraduate degree in from the Warsaw University of Science and Technology. But she became fascinated with Dr. Rizo-Rey's biophysics research into neuronal function and was impressed by UT SW's supportive and collaborative atmosphere. After returning to Poland and completing her master's in 2016, she came back to UT Southwestern to pursue doctoral studies in molecular biophysics. "This is the process that underlies everything that we do — our emotions, feelings — basically who we are as humans," she said, explaining her attraction to research about how nerve cells in the brain communicate.

"Karolina Stepien has a brilliant intellect and enormous curiosity that drives her to tackle multiple projects in parallel," Dr. Rizo-Rey said. "She has a combination of talent and effort that I have seen in very few students over my 32 years at UT Southwestern."

"We are honored and delighted to celebrate Ms. Karolina Stepien as the 2021 recipient of the Ida Green Award," said Kathleen M. Gibson, President and CEO of Southwestern Medical Foundation. "Ms. Stepien has served the UT Southwestern community and the Graduate School with distinction, both in leadership and in service. Her scientific contributions have advanced the understanding of neurotransmitter release and embody the innovative spirit and rich legacy of Ida Green." The Ida M. Green Award was established by Southwestern Medical Foundation in honor of Ms. Green, who died in 1986. Her husband, Cecil Green, who died in 2003, worked at General Electric and later co-founded Texas Instruments. Mrs. Green provided unrestricted gifts to many community organizations, including a major bequest to Southwestern Medical Foundation. The award includes a $20,000 prize.

In 2019, Ms. Stepien's work led to publication in Nature Communications of a study that explained the competition between two neuronal proteins — Munc18-1 and eNAP — to bind to a protein in the membrane of the neuron called syntaxin-1. Depending on which protein wins this competition, membrane fusion and then release of the neurotransmitters outside the cell is either helped or inhibited, Ms. Stepien said. This was her first study as lead author.

In 2021, she was the first author of a PNAS study that focused on recapitulating the process of neurotransmitter release in the test tube with purified proteins. She also has been an author on six additional papers in high-impact journals.

During her time at UTSW, Ms. Stepien served as President of Quest for Care, an organization that helps Ph.D. students learn about career options, and she volunteered as chair in the science area for United To Serve, which organizes an annual health fair in Dallas. Working with a friend who is a Fulbright Scholar and a UTSW graduate student, Martyna Konos, Ms. Stepien founded a local chapter of the Fulbright Scholar organization for those in the Dallas area. In addition, she chairs the Molecular Biophysics Program's social committee, arranging monthly get-togethers.

Dr. Rizo-Rey holds the Virginia Lazenby O'Hara Chair in Biochemistry

Bajter, Niederkorn named UT Southwestern Professors Emeritus

From Staff Reports

Two UT Southwestern faculty – one an internationally recognized cerebrovascular surgeon and the second a leader in the field of ocular immunology – have been appointed Professors Emeritus.

Former Chair of Neurological Surgery Hunt Batjer, M.D., retired at the end of 2020 after a nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.

Dr. Batjer's UT Southwestern journey began in 1973 as a medical student. He completed his medical degree, graduate and postdoctoral internship, and neurological surgery residency at UT Southwestern, followed by a neurology fellowship at the University College London, and a cerebrovascular disorders fellowship at the University of Western Ontario. He served on the UT Southwestern faculty for 13 years before leaving to become the Chief of Neurological Surgery at the Northwestern University Feinberg School of Medicine. In 2012, he returned to UT Southwestern as the third Chair of Neurological Surgery.

Dr. Batjer's academic pursuits and research in ischemic and hemorrhagic stroke, brain injuries have resulted in nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.

Dr. Batjer's UT Southwestern journey began in 1973 as a medical student. He completed his medical degree, graduate and postdoctoral internship, and neurological surgery residency at UT Southwestern, followed by a neurology fellowship at the University College London, and a cerebrovascular disorders fellowship at the University of Western Ontario. He served on the UT Southwestern faculty for 13 years before leaving to become the Chief of Neurological Surgery at the Northwestern University Feinberg School of Medicine. In 2012, he returned to UT Southwestern as the third Chair of Neurological Surgery.

Dr. Batjer's academic pursuits and research in ischemic and hemorrhagic stroke, brain injuries have resulted in nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.

Dr. Batjer's UT Southwestern journey began in 1973 as a medical student. He completed his medical degree, graduate and postdoctoral internship, and neurological surgery residency at UT Southwestern, followed by a neurology fellowship at the University College London, and a cerebrovascular disorders fellowship at the University of Western Ontario. He served on the UT Southwestern faculty for 13 years before leaving to become the Chief of Neurological Surgery at the Northwestern University Feinberg School of Medicine. In 2012, he returned to UT Southwestern as the third Chair of Neurological Surgery.

Dr. Batjer's academic pursuits and research in ischemic and hemorrhagic stroke, brain injuries have resulted in nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.

Dr. Batjer's UT Southwestern journey began in 1973 as a medical student. He completed his medical degree, graduate and postdoctoral internship, and neurological surgery residency at UT Southwestern, followed by a neurology fellowship at the University College London, and a cerebrovascular disorders fellowship at the University of Western Ontario. He served on the UT Southwestern faculty for 13 years before leaving to become the Chief of Neurological Surgery at the Northwestern University Feinberg School of Medicine. In 2012, he returned to UT Southwestern as the third Chair of Neurological Surgery.

Dr. Batjer's academic pursuits and research in ischemic and hemorrhagic stroke, brain injuries have resulted in nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.

Dr. Batjer's UT Southwestern journey began in 1973 as a medical student. He completed his medical degree, graduate and postdoctoral internship, and neurological surgery residency at UT Southwestern, followed by a neurology fellowship at the University College London, and a cerebrovascular disorders fellowship at the University of Western Ontario. He served on the UT Southwestern faculty for 13 years before leaving to become the Chief of Neurological Surgery at the Northwestern University Feinberg School of Medicine. In 2012, he returned to UT Southwestern as the third Chair of Neurological Surgery.

Dr. Batjer's academic pursuits and research in ischemic and hemorrhagic stroke, brain injuries have resulted in nearly 40-year career. In his new role as Professor Emeritus, he looks forward to mentoring residents, and students and assisting with recruitment and program development.
Parikh joins UT Southwestern as Chief of Nephrology Division

By Jan Jarvis

Samiir Parikh, M.D., had one eye on the rich history of UT Southwestern and the other on its promising future when he accepted the position of Chief of the Division of Nephrology in the Department of Internal Medicine.

“This institution has a reputation for being dedicated to research, serving the needs of the patient population, and being a unique environment for biomedical education,” he said. “Very few places look far into the future, but I think this is one of those places. That is exciting and something I wanted to be a part of.”

Dr. Parikh is an outstanding physician-scientist who straddles the ideals of the clinical scientist exemplified by the late Donald Seldin, M.D.,” said Thomas Wang, M.D., Chair of Internal Medicine. Dr. Seldin led the Department of Internal Medicine from 1952 until 1988 and is viewed as the intellectual father of UT Southwestern.

“We have an outstanding and historic Nephrology Division, and I am excited to see it continue to advance under Dr. Parikh’s leadership,” Dr. Wang said.

Dr. Parikh, also Professor of Internal Medicine and Pharmacology, brings an enthusiasm for research, teaching, and clinical care to his new role and has focused on kidney disease throughout his career.

“Kidney disease is extremely common, but it’s also complex and silent,” he said. “Other than transplant, there’s really no magic bullet for our patients.” To date, Dr. Parikh’s research has emphasized mechanisms underlying acute kidney injury and sepsis. His work has sought to understand how patients with kidney disease survive major stressors such as surgery or severe infection.

Dr. Parikh was recruited to UT Southwestern from Harvard Medical School, where he was Professor of Medicine and Associate Vice Chair for Research in the Department of Medicine at Beth Israel Deaconess Medical Center. He graduated magna cum laude from Harvard with a degree in chemistry and later received the Founder’s Medal for highest academic standing from Vanderbilt University School of Medicine. Dr. Parikh, who completed residency and fellowship training in nephrology at Beth Israel Deaconess and Harvard, has mentored more than 10 trainees who have attained the job title of Assistant Professor or higher.

The pandemic was among the factors in his decision to join UTSW. Like many people, he chose to focus more on his long-term goals because of COVID-19 and its worldwide impact.

“I started asking myself, ‘How can I find a way to make more of an impact?’” Dr. Parikh said. He found his answer at UT Southwestern.

“We have truly distinguished faculty in Nephrology, and our fellows are among the best in the nation. It is a privilege to join this dedicated group as we try to improve the health of North Texas kidney patients,” he said.

“We have people here thinking about what comes next and how medicine will look in five, 10, 20 years.”

Dr. Parikh holds the Robert Tucker Hayes Distinguished Chair in Nephrology, in Honor of Dr. Floyd C. Rector, Jr., and the Ruth W. and Milton P. Levy, Sr. Chair in Molecular Nephrology.

Dr. Wang holds the Donald W. Seldin Distinguished Chair in Internal Medicine.

Best Employer Continued from page 1

stress and financial management.

UT Southwestern partners with diverse professional organizations within the community, including the National Association of Black Accountants, National Black MBA Association Inc., National Society of Hispanic MBAs, and the Association of Latino Professionals For America to assure that members are aware of the numerous employment opportunities available at UT Southwestern. Career development is supported by initiatives such as the President’s Council on Diversity and Inclusion, Business Resource Groups, the Women in Science and Medicine Advisory Committee, the Committee on the Advancement of Women, the Office of Faculty Diversity and Development, and the Office of Women’s Careers.

UT Southwestern is committed to an educational and working environment that provides equal opportunity to all members of the University community. In accordance with federal and state law, the University prohibits unlawful discrimination, including harassment, on the basis of race; color; religion; national origin; sex; including sexual harassment; gender identity or expression; disability; genetic information; citizenship status; and protected veteran status.

A growing legacy of workplace excellence

Other recent workplace honors for UT Southwestern include:

• Best Places to Work Postdocs from The Scientist
• Hospital Careers’ Top 100 Best Hospitals to Work For
• Top Veteran-Friendly Company from U.S. Veteran’s Magazine
• Top Healthcare Company in Best of the Best Awards for Hispanic Network Magazine and Black EOE Journal
• 2020 Healthiest Workplaces in America Higher Education Diversity in Excellence (HEED) Award from INSIGHT Into Diversity magazine, the oldest and largest diversity-focused publisher in higher education
• Top LGBTIQ+ Company from three publications, Professional Woman’s Magazine, Black EOE Journal, and Hispanic Network Magazine
• Top Mother-Friendly Worksite from the Texas Department of State Health Services
• Lex Frieden Award from the Texas Governor’s Committee on People with Disabilities
• Magnet Recognition from the American Nurses Credentialing Center
• Start Fit-Friendly Worksite Award from the American Heart Association
• Employer of the Year from the Association for Independent Living
• Top 10 Best Organizations for Leadership Development Award from the National Center for Healthcare Leadership
• Corporate Citizen Award from LaunchAbility

Technical skills training to adapt and master new software and technologies are part of employment opportunities at UTSW. Photo taken pre-pandemic.

UTSW has established online and in-person training and mentoring programs for future management and leadership roles. Photo taken pre-pandemic.
The printer’s extruder (right) pushes plastic out in a preprogrammed design. The suture pad created from 3D printing allows learners to practice suturing wounds using less-invasive techniques.

The ATLAS mold is one possibility, said Dr. Kenkel. “We have unusual models that you don’t see on the market,” she said. The ATLAS mold is one possibility, she said. A second is a novel simulation being developed with Jeffrey Kenkel, M.D., Chair of Plastic Surgery, that is designed to solve a clinical problem facing those in the field.

“We had a concept that required design, materials consideration, and implementation with the experts at the Simulation Center,” said Dr. Kenkel. “Our group is top-notch, from administration and implementation of a plan to design and production.”

Dr. Scott recalls the days when he was training to become a surgeon and needed a way to practice suturing. He jury-rigged a device by twisting two rubber exam gloves and pinning them inside a wooden box. “I sutured two gloves together,” he said.

“As a clinician and a researcher, he has helped transform such training for today’s students. “We’re much further along than where we started a mere 20 years ago,” he said of simulation training in general. And when it comes to 3D work, “not too many are doing what we’re doing in creating our own models.”

“It all translates to better patient care,” he said of the end result.