IN MEMORIAM

Peter O'Donnell Jr.: Visionary philanthropist, catalyst for progress

From Staff Reports

Peter O’Donnell Jr., whose vision, legendary generosity, and cherished friendship graced UT Southwestern for many decades, passed away Oct. 10 at the age of 97.

Throughout a lifetime of inspired philanthropy, Mr. O’Donnell and his late wife, Edith, along with the O’Donnell Foundation they established in 1957, contributed more than $300 million to UT Southwestern, supporting some of the most innovative and impactful programs at the Medical Center. The O’Donnell’s gifts to UT Southwestern, almost all made anonymously and without public recognition at the time, transformed the Medical Center into an internationally recognized research leader.

“Excellence was a watchword for Mr. O’Donnell in everything he did and touched. He was a giant of our institution and a quiet driving force in advancing medical science,” said Daniel K. Podolsky, M.D., President of UT Southwestern.

UT Southwestern designated as founding Rare Disease Center of Excellence

By Patrick Maschuch

UT Southwestern has been selected as a Rare Disease Center of Excellence – Charter members of an elite network of 31 centers nationally to expand access and advance care and research for rare disease patients in the United States.

Established by the National Organization for Rare Disorders (NORD), the network’s goals foster national collaborations to share knowledge and findings, connect experts and patients across the country, and work to improve the pace of progress in clinical care, treatments, and research.

“UT Southwestern is an exceptional environment due to our multidisciplinary, team-based approach to care. Departments across our Medical Center – Pediatrics, Internal Medicine, Neurology, Ophthalmology, Urology, and others – are focused on innovative research and the highest quality care for those with rare disorders,” said John Warner, M.D., Executive Vice President for Health System Affairs. “Close communication between Pediatrics and Internal Medicine translates into exceptional care for our patients, who seamlessly transition from childhood to adulthood with no interruption in clinical management. Our programs in cystic fibrosis, inborn errors of metabolism, neurofibromatosis, congenital heart disease, and von Hippel-Lindau disease are excellent examples.”

Ralph Delleradonis, M.D., Ph.D., a UTSW Professor of Pediatrics who also directs the Genetic and Metabolic Disease Program at the Children’s Medical Center Research Institute at UT Southwestern, said the designation by NORD “is a sign of an institutionalwide commitment by clinicians from many different departments to patients with these rare conditions.”

There are about 7,000 known rare diseases, many of which disproportionately affect children, adolescents, and young adults. Although most rare diseases might individually affect only a few hundred to a few thousand people worldwide, rare diseases collectively are common, affecting an estimated 25 million to 30 million people in the U.S. alone.

People living with rare diseases face many challenges in finding a diagnosis and quality clinical care. Many of these diseases have a genetic cause, are serious or life-threatening, and are challenging to diagnose and treat. In the U.S., only about 50% of identified rare diseases have an FDA-approved therapy available.

In establishing the Centers of Excellence program, NORD identified clinical centers across the country that provide exceptional rare disease care and have demonstrated a deep commitment to serving rare disease patients and their families using a holistic, state-of-the-art approach. Centers were evaluated through a competitive application process requiring evidence of expertise across multiple specialties to meet the needs of rare disease patients and significant contributions to rare-disease patient education, physician training, and research.

This designation will let patients with rare diseases know that they can be cared for here through their life spans – from birth through old age – and it will attract trainees, clinicians, and researchers to join the UT Southwestern family,” said Angela Schuerer, M.D., Professor of Pediatrics and Pathology, who led the NORD application effort and will be Director of the Center at UT Southwestern.

“Our participation in the Centers of Excellence network will allow us to participate in harmonized, multicenter clinical trials and in developing new treatment guidelines, which will ultimately help us take the best care of our patients. It also provides a framework for clinical and laboratory research. Rigorous medical science requires an adequate number of participating patients. Having a strong network increases the chance for patients to participate in research projects and increases the useful data available to the researchers,” said Dr. Schuerel, a member of the Eugene McDermott.

UT Southwestern’s program, NORDID, selected clinical centers across the country that provide exceptional rare disease care and have demonstrated a deep commitment to serving rare disease patients and their families using a holistic, state-of-the-art approach. Centers were evaluated through a competitive application process requiring evidence of expertise across multiple specialties to meet the needs of rare disease patients and significant contributions to rare-disease patient education, physician training, and research.

This designation will let patients with rare diseases know that they can be cared for here through their life spans – from birth through old age – and it will attract trainees, clinicians, and researchers to join the UT Southwestern family,” said Angela Schuerer, M.D., Professor of Pediatrics and Pathology, who led the NORD application effort and will be Director of the Center at UT Southwestern.

“Our participation in the Centers of Excellence network will allow us to participate in harmonized, multicenter clinical trials and in developing new treatment guidelines, which will ultimately help us take the best care of our patients. It also provides a framework for clinical and laboratory research. Rigorous medical science requires an adequate number of participating patients. Having a strong network increases the chance for patients to participate in research projects and increases the useful data available to the researchers,” said Dr. Schuerel, a member of the Eugene McDermott.

Please see NORD on page 4

Roche honored with Regents’ Outstanding Teaching Award

By Carol Marie Cropper

Vivienne Roche, M.D., Professor of Internal Medicine and a specialist in geriatric medicine at UT Southwestern, has been recognized with the UT System’s highest honor for an educator – the Regents’ Outstanding Teaching Award.

Dr. Roche is the 54th UT Southwestern faculty member to receive the Regents’ Teaching Award, which recognizes outstanding teaching, mentoring, and personal commitment to students and the learning process.

“Dr. Roche is an exemplary scholar and educator, and we are truly delighted that the Board of Regents has recognized her commitment to our students and other learners,” said Daniel K. Podolsky, M.D., President of UT Southwestern. Her dedication and talent as a teacher make it possible for UT Southwestern to prepare future physicians.

A UTSW Distinguished Teaching Professor, Dr. Roche was one of 14 educators from across the state system recognized Nov. 18 as Regents’ Award winners. Honorees receive a certificate, medal, and check for $25,000 in appreciation for extraordinary dedication to teaching and students.

“The best way to ensure students get the full promise of a UT degree is to provide them with outstanding faculty,” said Kevin P. Elmer, Chair of the Board of Regents, in announcing this year’s honorees. “On behalf of the Board of Regents, I extend our profound appreciation to these educators for their commitment to teaching excellence and their exemplary service to UT Southwestern and to the state of Texas.”

Please see AWARD on page 2

Leadership Legacy

David W. Russell, Ph.D., who helped grow UTSW into a basic science powerhouse, returns and is named Professor Emeritus.

Dedicated to STEM

UT Southwestern partners with the Dallas Independent School District to launch a new elementary school focused on biomedical education.

Taking the Plunge

Six faculty members receive prestigious National Institutes of Health awards as part of the NIH’s High-Risk, High-Reward grant program.
Inaugural Dean of Basic Research Russell named Professor Emeritus

By Cristina Brownlee

David W. Russell, Ph.D., whose four-decade career at UT Southwestern included serving as Dean of Basic Research for the last 17 years, has been appointed as founding director of the Institute of Molecular Genetics in honor of his contributions. Recently retired, Dr. Russell also held the titles of Vice Provost and the Eugene McLennan Distinguished Chair in Molecular Genetics.

“In addition to being an accomplished researcher and scientist, Dr. Russell has been a great friend, mentor, and trusted colleague to hundreds of faculty members and students throughout his 40-year career at UT Southwestern,” said Daniel E. Podolsky, M.D., President and Provost.

Early collaborators with Dr. Russell were UT Southwestern Nobel Laureates Michael Brown, M.D., and Joseph Goldstein, M.D., whose discoveries on the regulation of cholesterol metabolism jointly earned them the 1985 Nobel Prize in Physiology or Medicine.

“It has been an immense joy to witness the great scientific achievements and the mentoring of the many students and junior colleagues of David Russell,” said Drs. Brown and Goldstein in a joint statement. “David trained at the University of British Columbia with Michael Smith, the Nobel Laureate who developed the technology that permits the introduction of targeted RNAi. David brought molecular biology to Dallas at a time when our campus was far behind the leader in this newly emerging field. After joining our Department in 1982, he soaked up the field of cholesterol metabolism and gobbled up like a sponge clear tending ink. His deep understanding allowed him to become the world leader in the identification of genes that mediate the transformation of cholesterol into steroid hormones and bile acids. Along the way, he elucidated the genetic basis of several diseases. This work earned him election in 2006 to the National Academy of Sciences at a relatively young age,” they added.

Named initially as Assistant Professor of Molecular Genetics, Dr. Russell spent his entire academic career at UT Southwestern. With postdoctoral training at the University of British Columbia in sequencing, mutagenesis, and manipulating DNA, he arrived at UT Southwestern with the goal of understanding the role of cholesterol and lipids in the development of cardiovascular disease. His research focused on the role of lipoproteins in cholesterol and lipid metabolism, and he discovered that a single gene mutation can cause familial hypercholesterolemia, a condition that increases the risk of heart disease.

Award

Continued from page 1

sed with honors from the Royal College of Surgeons in Ireland and Australia before moving to the U.S. and completing a fellowship in genetic medicine at the University of Colorado Health Sciences Center in Denver (now the University of Colorado Anschutz Medical Campus). She completed a year of internal medicine residency at UT Southwestern and began her Pediatric Residency at UT Southwestern in 1999 as an Assistant Professor.

Dr. Roche has been recognized as a member of the Southwestern Academy of Teachers (SWAT), an elite group of UT Southwestern educators, of which she is President-elect. In 2019, she was inducted into the UT System’s Kenneth J. Shine, M.D., Academy of Health Science Educators, an organization that promotes excellence in the field.

Dr. Roche is the course director for the Fellowship in Aging class at UT Southwestern, instructs and develops curriculum for the four-year Geriatric Medicine elective, is Director of the Geriatric Medicine Fellowship Program, Director of UT Southwestern’s Geriatric Care Center Clinic, and the institution’s faculty sponsor for the Medical Student Training in Aging Research (MSTAR) Program.

“I have been an immense honor to teach at UT Southwestern for more than 20 years,” she said. “Our medical students, faculty, and team members are exceptionally gifted, talented, and generous, and I continue to appreciate and learn from them. It is wonderful when a student sees a patient, learns a geriatric teaching pearl, and has the opportunity to make it happen for that patient. You can see it in their eyes.”

“Dr. Roche’s impressive clinical and research contributions exemplify the value of our geriatrics program,” said Todd J. B. Ghysels, M.D., M.P.H., founding director of the UT Southwestern Geriatric Care Center.

“Dr. Roche is a leader in our field, and we are thrilled to see her receive this prestigious award,” said Michael D. Baugh, M.D., F.A.C.P., Chair of the Department of Internal Medicine.

Ahmed H. Idris, M.D.

Dr. Idris receives AACP award for research excellence

For almost four decades, Ahmed H. Idris, M.D., has been actively involved in research, primarily in the area of resuscitation from cardiac arrest and severe traumatic injury. For his efforts, Dr. Idris was recently awarded the 2021 American College of Emergency Physicians (ACEP) Award for Outstanding Contributions in Resuscitation Research, which honors an ACEP member for advances in emergency medicine research.

“The award recognizes the many high-impact projects we contributed to the field of emergency medicine and to the care of our patients,” said Dr. Idris, Professor of Emergency Medicine and Interim Medicine.

Dr. Idris fell in love with medicine as a child in Ethiopia with the U.S. Army. Upon graduating, he awarded the Bronze Star Medal for his service with the 1st Air Cavalry in Vietnam. Following his military service, he earned a bachelor’s degree in biology from Southwest Texas State University and his medical degree from Bush Medical College in Chicago. During his residency at Cook County Hospital, he co-authored a study on transfusion to a public hospital that was published in The New England Journal of Medicine in 1984 and led to the Emergency Medical Treatment and Labor Act (EMTALA).

Dr. Idris joined UT Southwestern in 2008. He served as the DFWM Principal Investigator for the National Institute of Health’s (NIH) sponsored Resuscitation Outcomes Consortium that conducted large-scale clinical trials from 2004 to 2013.

A past National Chair of Basic Life Support for the American Heart Association, Dr. Idris has served as a consultant to the NIH, the U.S. Navy, and NASA. From 1994 to 2003, he was Director of the NASA Human Space Flight Rescue Program for the space shuttle. In 2008 he was inducted into the NASA Space Technology Hall of Fame for his work on the Global Positioning System. He currently serves as Director of the DFWM Center for Resuscitation Research.

At UT Southwestern, Dr. Idris teaches emergency medicine and serves as Director of Emergency Medicine Research in the Department of Emergency Medicine. He also leads research at Parkland Memorial Hospital and William P. Clements Jr. University Hospital.
UT Southwestern has promoted Erin Sine, formerly a Director and Managing Attorney for General Legal Affairs, to Vice President for Legal Affairs. In her new role, Ms. Sine will provide guidance to executive leaders, faculty, and staff to ensure UT Southwestern maintains the highest levels of public trust as a state-supported entity.

Ms. Sine, who joined UT Southwestern as an attorney in 2010 and became Director and Managing Attorney for General Legal Affairs in 2013, was selected after an extensive national search.

“Ms. Sine’s reputation as a talented, collaborative, and visionary leader, deeply committed to providing thoughtful counsel to her clients across UT Southwestern made her an outstanding choice for this important leadership role,” said Dr. Podolsky.

Before joining UT Southwestern, Ms. Sine worked as a commercial litigation associate at the Richmond, Virginia-based law firm McGuireWoods. She graduated magna cum laude from Clemson University, then earned her law degree cum laude from Tulane University Law School in New Orleans.

“She is truly an honor to be named Vice President for Legal Affairs,” Ms. Sine said of her appointment, which took effect Sept. 1. “I feel energized and ready for the challenge. I am privileged to lead an amazing team of experienced attorneys, risk managers, and staff who are committed to our collective success in support of UT Southwestern’s missions.”

Ms. Sine plans to focus on three core values for the Office of Legal Affairs: partnership, professionalism, and excellence. That will translate, she said, into being collaborative and conducting ourselves with integrity and a productive attitude.

“We will deliver quality legal work and excellent client service and always maintain the utmost ethical standards,” said Ms. Sine.

In her new role, Ms. Sine will serve as the University’s chief legal officer, institutional ethics officer, and public information official.

The Office of Legal Affairs provides legal advice and counsel, faculty and staff training, and review of contracts and other legal documents. The Office also manages all litigation involving the development of UT Southwestern’s policies and procedures, provides legal advice regarding patient care and compliance, and advises on proposed collaborations with affiliated entities.

Dr. Podolsky holds the Philip O’Bryan Montgomery Jr., M.D. Distinguished Presidential Chair in Academic Administration, and the Doris and Bryan Wildenthal Distinguished Chair in Medical Science.

“UT Southwestern’s commitment spans all institutional missions and is embedded in student, faculty, and employee recruitment, retention, and advancement programs. Photo taken pre-pandemic.

UT Southwestern’s commitment spans all institutional missions - patient care, research, and education. It is embedded in dedicated student, faculty, and employee recruitment, retention, and advancement programs and reflected across voluntary employee business resource groups (EBRGs): Women and Allies EBRG, Asian-Pacific Islander EBRG, African-American Employee EBRG, Hispanic-Latino EBRG, Veterans EBRG, and LGBTQ and Allies EBRG.

UT Southwestern’s Offices of Student Diversity & Inclusion & Faculty Diversity & Development help recruit and retain top students and faculty to campus, while implementing strategies to promote the growth and presence of women and under-represented groups. The Office of Institutional Equity & Access advances a diverse, equitable, and inclusive campus culture for staff and students.

By Patrick Wascovich

For the fourth consecutive year, UT Southwestern has been recognized for its outstanding commitment to diversity and inclusion with the Health Professions Higher Education Excellence in Diversity (HEED) Award – one of only 51 higher education institutions and centers to receive the national honor.

“A diversity of experiences and backgrounds and the inclusion of differing perspectives help ensure that we succeed as an institution,” said Marc Nivet, Ed.D., Executive Vice President and Provost, and Dean, UT Southwestern Medical School. “Our hope is that the added hands-on experiences and education they will gain during their years at the Medical District PK-8 Biomedical School will be the beginning of a lifelong connection to math, science, and discovery.”

“UT Southwestern is dedicated to ensuring that every member of our student body—regardless of background—has access to the same opportunities,” said Dr. Lee. “It also highlights how science continues to evolve in a unique, scalable, and innovative way with students as young as 3 years old. This partnership with UT Southwestern is another example of cutting-edge resources that develop them into the next generation of scientists and medical professionals.”

The Medical District PK-8 Biomedical School will have no academic requirements or attendance boundaries. Enrollment offers are generated at random, through a lottery system, based on the number of seats available in each grade coupled with the student’s priority group. Half of the seats are reserved for economically disadvantaged students.

The school will be located on the UT Southwestern campus at 6516 Forest Park Road. Families may apply during the application period from Nov. 1 to Jan. 31, 2022. For more information, visit dallasisd.org/medicadtricstraitsschool.

Dr. Lee holds the Aikcas James Gill, M.D. Chair in Medical Science.

By Carol Marie Cropper

UT Southwestern has partnered with Dallas ISD to open a new kind of school – a PK-8 biomedical school in the heart of Dallas’ medical district. Dallas ISD and UT Southwestern together will launch a new transformation school slated to open its doors next fall.

The unique partnership is one of the first in the nation to focus on biomedical science for elementary students at a medical institution.

“This exciting endeavor underlines what it takes to build and inspire the next generation of physicians and scientists – instilling a love for science in childhood,” said W. Page A. Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean, UT Southwestern Medical School. “Our hope is that the added hands-on experiences and education they will gain during their years at the Medical District PK-8 Biomedical School will be the beginning of a lifelong connection to math, science, and discovery.”

The unique partnership is one of the first in the nation to focus on biomedical science for elementary students at a medical institution.

“This exciting endeavor underlines what it takes to build and inspire the next generation of physicians and scientists – instilling a love for science in childhood,” said W. Page A. Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean, UT Southwestern Medical School. “Our hope is that the added hands-on experiences and education they will gain during their years at the Medical District PK-8 Biomedical School will be the beginning of a lifelong connection to math, science, and discovery.”

The unique partnership is one of the first in the nation to focus on biomedical science for elementary students at a medical institution.

“This exciting endeavor underlines what it takes to build and inspire the next generation of physicians and scientists – instilling a love for science in childhood,” said W. Page A. Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean, UT Southwestern Medical School. “Our hope is that the added hands-on experiences and education they will gain during their years at the Medical District PK-8 Biomedical School will be the beginning of a lifelong connection to math, science, and discovery.”

The unique partnership is one of the first in the nation to focus on biomedical science for elementary students at a medical institution.
By Debrah Wormser

UT Southwestern stem cell scientists have found that stringent lineage tracing is crucial for studies of nerve cell regeneration. Their results, published in Cell, show that this tracing is far from routine in the field and suggest that earlier studies reporting “striking” regeneration results must be reexamined.

In a new study, the Zhang Laboratory at UT Southwestern used a technique called Mosaic-seq to study a large number of cells in the mouse brain at the same time. Just one experiment can perturb thousands of regions in the genome to better understand their function. With Mosaic-seq, researchers can use single-cell sequencing to study different regions of the genome at the same time. This technique uses stringent lineage tracing, this tracing is far from routine in the field and suggest that earlier studies reporting “striking” regeneration results must be reexamined.

Mosaic-seq allows high throughput analysis of the molecular events that occur during programming of embryonic stem cells into other cell types. This technology uses single-cell sequencing to study different regions of the genome. From left: Gary Hon, Ph.D., W. Lee Kraus, Ph.D., and Lei-Lee Wang, Ph.D. Dr. Hon is also a member of the Zhang laboratory. The Zhang laboratory has reported several advances in neural stem cell biology, such as regeneration of the brain and spinal cord in mice following injury. The Zhang laboratory’s work on cell fate reprogramming in live adult mice was recognized by the IGVF (Institute of Genetic and Metabolic Diseases) in 2018, with a grant application.

A recent study by the National Institutes of Health’s National Center for Advancing Translational Sciences (NCATS) provides fresh evidence of the potential impact of rare diseases on public health. The findings in the Orphanet Journal of Rare Diseases were drawn from estimates over five years indicating costs ranging from $4,899 to $38,994 for treating rare disease patients compared with $2,211 for those treated without a rare disease. The NCATS team reported that extrapolating those estimated costs for the approximately 25 million to 30 million individuals with rare diseases in the U.S. results in total yearly direct medical costs of approximately $40 billion, which is similar to the combined annual direct medical costs for cancer, heart failure, and Alzheimer’s disease.

For more information on the NORD Rare Disease Centers of Excellence program and the full list of centers, visit the program website rare-diseases.org/centresofexcellence.

Studying whether Mosaic-seq can help researchers narrow down the search for a specific cell type to which to attribute a particular phenotype. Dr. Hon, who is also a member of the Zhang laboratory, said, “We employed the currently available lineage tracing assays. No such thing has been published.”

The Zhang Laboratory's work on cell fate reprogramming in live adult mice was recognized by the IGVF (Institute of Genetic and Metabolic Diseases) in 2018, with a grant application.

One big surprise from genomewide association studies is that gene-pos region contains many disease-causing alleles,” said Dr. Hon. “It turns out that the signatures largely overlap with DNA elements – found by the Encyclopedia of DNA Elements (ENCODE) Consortium – that control when genes turn on. The goal of this consortium is to fill in the gaps, linking DNA sequences to genes, phenotypes, and disease. Ultimately, this knowledge will allow us to interpret the disease potential of any person’s genome sequence.”

Dr. Kraus, Professor of Obstetrics and Gynecology and Pharmacology, will use additional CRISPR-based technologies to study how genetic variations in non-coding RNAs originating from the regulatory elements impacts the development of the placenta, a key organ that supports the fetus as it grows, as well as the heart and central nervous system.

Dr. Munihi, who is especially interested in what might the project can shed on congenital heart disease, said the IGVF Consortium initiative potentially could fill in huge pieces of the puzzle for many diseases.

“Using rigorous lineage tracing, Drs. Wang and Zhang reported in 2018 that while attempting to transform a type of brain cell known as a glial cell it became functional– to do careful analyses,” said Dr. Zhang, also a member of the Hamon Center for Regenerative Science and Medicine.

“After running dozens of experiments using a range of different techniques, the researchers identified which specific lineage tracing assays appeared most robust and reliable,” the co-first authors wrote.

“We employed the currently available lineage tracing assays. No such thing has been published,” said Dr. Hon.

The scientists also identified the researchers who were less likely to provide precise results. The study concludes by letting reliable lineage tracing tests and strong experimental evidence be used in all laboratories doing nerve cell regeneration research.

Dr. Hon is a member of the Zhang laboratory. The Zhang laboratory has reported several advances in neural stem cell biology, such as regeneration of the brain and spinal cord in mice following injury. The Scientists recognized his lab’s work on cell fate reprogramming in live adult mice as one of 2014's Big Advances in Science. He won a prestigious National Institutes of Health Director's New Innovator Award in 2009.

Using rigorous lineage tracing, Drs. Wang and Zhang reported in 2018 that while attempting to transform a type of brain cell known as a glial cell it became functional– to do careful analyses,” said Dr. Zhang, also a member of the Hamon Center for Regenerative Science and Medicine.

After running dozens of experiments using a range of different techniques, the researchers identified which specific lineage tracing assays appeared most robust and reliable,” the co-first authors wrote.

“We employed the currently available lineage tracing assays. No such thing has been published,” said Dr. Hon.

The scientists also identified the researchers who were less likely to provide precise results. The study concludes by letting reliable lineage tracing tests and strong experimental evidence be used in all laboratories doing nerve cell regeneration research.

Dr. Hon is a member of the Zhang laboratory. The Zhang laboratory has reported several advances in neural stem cell biology, such as regeneration of the brain and spinal cord in mice following injury. The Scientists recognized his lab’s work on cell fate reprogramming in live adult mice as one of 2014's Big Advances in Science. He won a prestigious National Institutes of Health Director's New Innovator Award in 2009.
From Staff Reports

Three UT Southwestern scientists — Lonna Saelves Gomez, Lu Sun, and Jian Zhou — have been awarded $1.5 million each from the National Institutes of Health (NIH) as part of the NIH’s High-Risk, High-Reward program, which supports scientists pursuing innovative research with the potential for having a broad impact on biomedical, behavioral, or social sciences.

Lonna Saelves Gomez, Ph.D., Assistant Professor in Radiation Oncology and in the Center for Alzheimer’s and Neurodegenerative Diseases

"The Juvenile Batten Syndrome is a disease that devastates the heart and nerves and that can differ greatly from patient to patient," said Dr. Gomez. "It was very helpful for the researchers to understand the different patterns from different tissues in affected patients, which will help in the future study of the disease.

"This research will continue work to identify new mutations that contribute to kidney disease. The team is focused on finding a way to use these mutations to develop new treatment strategies," said Dr. Gomez.

Lu Sun, Ph.D., Assistant Professor of Computer Science

Dr. Sun's grant will allow him to study interactions between neurons and glial cells in the brain that could provide insight into the causes of neurological disorders.

"People often think of the nervous system as a whole bunch of neurons linking each other, but now we see the complex roles of different types of cells in the brain and their interactions," explained Dr. Sun. "It is crucial to understand the nervous system that operates in health and disease. Our research will help us understand the underlying mechanism of these interactions.

"This research will continue work to understand how the disease spreads.

"Involving a large number of patients, the clinical trial established that SABR didn't increase complication rates. Each patient received five SABR treatments to the tumor extending all the way into the heart. Half of patients who survive these treatments are still alive 2 years later. Many cases are caught early, but in about 40% of cases, kidney cancer has invaded or spread at the time of diagnosis.

"Dr. Timmerman led the UTSW team in the study of kidney cancer and is currently working on developing new treatment strategies. The results showed that invasion involves the transient activation of a gene program that enables cells to survive within blood vessels. The novel approach allows us to establish new treatments for kidney cancer patients.

"This was only possible by assembling a team of experts in different fields. The team's unique ability to invade large veins, tumor extensions, as they may give patients a better chance for recovery." said Dr. Timmerman.

Jian Zhou, Ph.D., Assistant Professor in Medical Genetics

Dr. Zhou plans to investigate the three-dimensional structure of DNA and its impact on health with his grant funding.

"I am very grateful that I was chosen for this award," said Dr. Zhou, who joined UTSW in 2019. "It is a significant investment in furthering our understanding of the genomic sequence.

"Dr. Zhou’s research will focus on fibrils responsible for human diseases, which are the main focus of my lab. We are dedicated to finding new treatment options for patients with Alzheimer's and ATTR amyloidosis.

"It is crucial to understand how the disease spreads.

"The Juvenile Batten Syndrome is a disease that devastates the heart and nerves and that can differ greatly from patient to patient," said Dr. Gomez. "It was very helpful for the researchers to understand the different patterns from different tissues in affected patients, which will help in the future study of the disease.

"This research will continue work to identify new mutations that contribute to kidney disease. The team is focused on finding a way to use these mutations to develop new treatment strategies," said Dr. Gomez.
O’Donnell continued from page 1

the mysteries of the brain – from the molecular level of brain function to the root causes of diseases ranging from those that occur with such conditions as traumatic brain injury and Alzheimer’s.

Decades of support

The establishment of the O’Donnell Brain Institute was the capture of a remarkable alian partnership between Mr. O’Donnell and UT Southwestern, which was set in motion in 1981 when he engaged the courts of the Center for Human Nutrition. His investments in the Center for Human Nutrition during those more than three decades enabled UT Southwestern to continue its work to advance thinking in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer.

In addition to ongoing support, the Center was able to conduct some of the best research on the effectiveness of statin medications to lower cholesterol, as well as to advance thinking in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer.

Throughout these decades, the Center for Human Nutrition has continued to be a leader in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer.

In addition to ongoing support, the Center for Human Nutrition, Mr. O’Donnell made significant contributions to support research in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer.

Peter O’Donnell was not only a wise and generous philanthropist – he was an innovator. When he saw a need, he created a program to meet that need. When he saw a problem, he created a program to help solve it. Mr. O’Donnell had a unique ability to see the bigger picture and to act on it. His commitment to supporting research and education in the field of chronic conditions has made a significant impact on the lives of many people and will continue to do so for generations to come.

The O’Donnell Brain Institute has continued to be a leader in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer. O’Donnell’s continued support has allowed the Center to continue its work and to continue to make a difference in the lives of patients and their families.

J. William Harbour, M.D.

From Staff Reports

Jyothsna Gattineni, M.D., has been appointed Chief of Pediatric Nephrology Division for UT Southwestern and Children’s Health after serving as the Division’s Interim Chief for the last year.

Under her leadership, the Division within the UTSW Department of Pediatrics has grown to include 10 full-time pediatric nephrologists.

Dr. Gattineni’s extensive clinical experience combined with her leadership skills made her the perfect choice to build upon the Division’s legacy while fostering a culture of excellence, innovation, teamwork, and compassion.

Dr. Gattineni, Assistant Professor, M.D., Interim Chair of Pediatrics.

One of the largest pediatric nephrology divisions in the nation, the Division is the main provider of clinical and testing services for children with kidney disease, bone disease, and hypertension at Children’s Medical Center Dallas and Children’s Health’s Pediatric Urology Institute. Nephrologists care for 60 to 70 patients with end-stage renal disease, placing the program among the three largest providers of such care for children in the country. U.S. News & World Report’s annual Best Hospitals listing consistently ranks the Division among the top pediatric nephrology programs nationwide.

The Division is also home to multiple research labs and remains one of the largest fellowship programs funded by a National Institutes of Health T32 grant to train pediatric nephrologists.

“I appreciate the confidence entailed in me to lead this Division, which has a storied past and growing footprint in North Texas,” said Dr. Gattineni.

Dr. Gattineni appointed Chief of Pediatric Nephrology Division

By Catherine Gara

As a native of Dallas, J. William Harbour, M.D., has watched UT Southwestern grow over the years into one of the nation’s premier academic medical centers. Now he is playing a role in shaping its future as the new Chair of Ophthalmology, succeeding Professor Emeritus James McCulley, M.D., who led the Department for more than 20 years.

Dr. Harbour joined UT Southwestern Nov. 1 from the University of Miami Miller School of Medicine, where he served as the Founding Director of the Translational Research at the Bascom Palmer Eye Institute and as Associate Director for Basic Science at the University of Miami School of Medicine.

He received his undergraduate degree from Texas A&M University in College Station and at the Sylvester Comprehensive Cancer Center.

Translational Research at the Bascom Palmer Eye Institute was the focus of Harbour’s research while serving as the Division’s longtime former Director and a close friend of Dr. McCulley. Dr. Harbour joined the UT Southwestern faculty in 2009 after a career highlighting academic and educational pursuits while fostering a culture of excellence.

What drew you to UT Southwestern?

“With his determination to stay out of the spotlight, the full extent of Mr. O’Donnell’s impact on society is likely not known by many of those who have benefited from his vision and generosity,” said Dr. Podofsky. “He touched legions with compassion, an uncommon generosity, and an earnest love of mankind. The scope and depth of ways in which he advanced the work of the Medical Center is truly remarkable. He will be deeply missed.”

Dr. Beutler, Director of the Center for the Study of Infections, the Dorm and the Wholesale Chair in Medical Science.

Dr. Goldstein, a Regental Professor, holds the Julie and Louis A. Borchef, Jr. Distinguished Chair in Biomolecular Research and the Paul J. Thomas Chair in Medical Science.

Dr. Goldstein, a Regental Professor, holds the Julie and Louis A. Borchef, Jr. Distinguished Chair in Biomolecular Research and the Paul J. Thomas Chair in Medical Science.

Dr. Podofsky holds the Philip O’Brian Montgomery Jr., M.D., Distinguished Professorship in Pediatrics and the Doris and Bryan Wittylen Distinquished Chair in Medical Science.

What aspects of your background make you a good fit for the position?

“I appreciate the confidence entailed in me to lead this Division, which has a storied past and growing footprint in North Texas,” said Dr. Gattineni.

What is your vision for the Division?

“I am looking forward to working with the Division to continue its tradition of excellence in ophthalmology discovery and clinical care, and to advance. I’ve also witnessed the skills of great experts in their fields. I’m looking forward to interdisciplinary research experience and established collaborative initiatives that Dr. Harbour brings will further elevate UT Southwestern as a national hub for excellence in ophthalmology discovery and clinical care,” said W. Andrew Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean of UT Southwestern Medical School. “We are fortunate to have him join us.”

In an interview for Center Times, Dr. Harbour shared why he chose to join UTSW and what he hopes to accomplish.

What drew you to UT Southwestern?

“It was exciting to see a vibrant medical center in the last decade. Many diseases, like macular degeneration, used to inevitably lead to blindness but can now be treated. Many of these advances have been spurred by cutting-edge research in proteomics, genetics, and pharmacology. My passion is turning these advances in the clinic into new opportunities to advance. I’ve also witnessed the skills of great experts in their fields.”

“Peter O’Donnell was not only a wise and generous philanthropist – he was an innovator. When he saw a need, he created a program to meet that need. When he saw a problem, he created a program to help solve it. Mr. O’Donnell had a unique ability to see the bigger picture and to act on it. His commitment to supporting research and education in the field of chronic conditions has made a significant impact on the lives of many people and will continue to do so for generations to come. O’Donnell’s continued support has allowed the Center to continue its work and to continue to make a difference in the lives of patients and their families.”

In addition to his support for the Center for Human Nutrition, Mr. O’Donnell made significant contributions to support research in the field of chronic conditions, such as heart disease, hypertension, diabetes, and cancer. His continued support helped propel the work of Nobel Laureates Michael Brown, M.D., and Joseph Goldstein, M.D., whose research served as the foundation for the development of statin drugs now used to control cholesterol.

“Peter O’Donnell was not only a wise and generous philanthropist – he was an innovator. When he saw a need, he created a program to meet that need. When he saw a problem, he created a program to help solve it. Mr. O’Donnell had a unique ability to see the bigger picture and to act on it. His commitment to supporting research and education in the field of chronic conditions has made a significant impact on the lives of many people and will continue to do so for generations to come.”

“Peter O’Donnell was not only a wise and generous philanthropist – he was an innovator. When he saw a need, he created a program to meet that need. When he saw a problem, he created a program to help solve it. Mr. O’Donnell had a unique ability to see the bigger picture and to act on it. His commitment to supporting research and education in the field of chronic conditions has made a significant impact on the lives of many people and will continue to do so for generations to come.”

“Peter O’Donnell was not only a wise and generous philanthropist – he was an innovator. When he saw a need, he created a program to meet that need. When he saw a problem, he created a program to help solve it. Mr. O’Donnell had a unique ability to see the bigger picture and to act on it. His commitment to supporting research and education in the field of chronic conditions has made a significant impact on the lives of many people and will continue to do so for generations to come.”
Advanced sinus surgery relieves nasal poly symptoms

By Jan Jarvis

For those with nasal polyps, advances in technology promise to make breathing easier, including a minimally invasive endoscopic procedure called functional endoscopic sinus surgery (FESS), which combines their knowledge of the delicate sinus cavities and nearby structures with the latest technology to remove nasal polyps.

Matthew Ryan, M.D., and his colleagues are experts in functional endoscopic sinus surgery (FESS), which combines their knowledge of the delicate sinus cavities and nearby structures with the latest technology to remove nasal polyps.

By Sharon Reynolds

As a young woman, Shona Patel, M.F.A.S., PA-C, discovered strength in the human spirit through the heroism of others. Her personal struggles led her to the UT Southwestern School of Health Professions, where she excelled in her studies to become a physician assistant, or PA.

“Her remarkable story began in Leicester, England, where she was born to Kamesh and Ramila Patel. When she was 5 years old, her family immigrated to the U.S. in search of a better life. “My grandmother was widowed at a young age and had six children that she raised on her own with very little money,” said Ms. Patel. “My family migrated from India to England, where we lived in a small motel that became our family business. All the kids cleaned rooms and did laundry. My parents and extended family taught me that through hard work, we could achieve anything.”

Although her parents, aunts, and uncles never attended college, they encouraged their children to get an education. Ms. Patel had just begun her freshman year at the University of Oklahoma when her mother was involved in a serious car accident, suffering a traumatic brain injury before slipping into a coma. “I remember hundreds of people sitting in the waiting room for days,” she said. “People took advantage of the strong educators and mentors, and I always do everything with integrity, honesty, and hard work. Because of what we went through, we learned to always give back.”

Ms. Patel describes her journey as one of sadness, tragedy, courage, determination, and support. “My family and the community were always there for us.”

Ms. Patel graduated from UT Southwestern School of Health Professions in 2001, and a successful physician assistant who is also passionate about community service. From UT Southwestern she went on to become a physician assistant at Metroplex Medical Centers in Dallas, an internal medicine practice that provides primary care services. She worked for 12 years for the owner, Manuel Grgito, M.D., who became her mentor. Then in 2014, an exciting opportunity presented itself – she acquired the medical practices from Dr. Grgito. Although caring for patients is what she enjoys most, Ms. Patel has put much of her energy into expanding her company’s footprint in North Texas. She currently owns five clinics and will open two more in January 2022.

Ms. Patel also earned a Master of Physician Assistant Studies from the University of Nebraska in 2003. She serves as a clinical preceptor for UT Southwestern students and has held an Assistant Professor position in the School of Health Professions, where she enjoys teaching the next generation of physicians and physician assistants.

She was the first person in her family to go to college, and all 13 of her cousins have completed college and graduate school. “We have doctors, engineers, physician assistants, accountants, and doctors in psychology in our family now,” she said. “We were taught to always do everything with integrity, honesty, and hard work. Because of what we went through, we learned to always give back.”

“Ritesh and I keep showing them how fortunate they are and that their education can help them have so much power to give back to others. It’s been a long journey for the least, but it’s been a positive one,” she said.

Changing the world through kindness

Throughout her life, Shona Patel has been inspired to help others and teach future generations to do the same. Each year, she and a team of volunteers travel to Honduras in a medical mission trip, providing free medical, dental, and pharmacy care to more than 1,000 people in one week.

“I love mentoring students who come with us on our mission trips. It inspires them to have more compassion and give to others less fortunate. We are humbled by our experiences and come back with more appreciation for what we have,” she said. Ms. Patel dreams of providing health care to people in underserved Dallas communities through free clinics or a mobile van. She hopes to educate more patients about the importance of preventive medicine, which will reduce the cost of health care and keep patients out of the hospital. Her personal legacy, she said, is what she teaches her children, Anjali and Adi, so they can leave their own legacy and help change the world for the better.

Ms. Patel and her husband, Ritesh, have taken their children to develop countries, volunteering at orphanages in India, and even enlisted their help in COVID-19 relief testing at her medical office.

“Ritesh and I are inspired by the way they have so much power to give back to others. It’s been a journey through many obstacles and challenges, but it’s been a positive one,” she said.

by Matthew Ryan, M.D., and his colleagues are experts in functional endoscopic sinus surgery (FESS), which combines their knowledge of the delicate sinus cavities and nearby structures with the latest technology to remove nasal polyps.

By Jan Jarvis

For those with nasal polyps, advances in technology promise to make breathing easier, including a minimally invasive endoscopic procedure called functional endoscopic sinus surgery (FESS) performed at UT Southwestern that removes polyps and is more effective than other procedures such as balloon sinus dilation.

For the 4% of adults who have nasal polyps, the surgery offers relief from congestion and nasal obstructions may restore the sense of smell, and reduces snoring and other symptoms, said Matthew Ryan, M.D., Professor of Otolaryngology – Head and Neck Surgery, who with his colleagues performs more than 700 advanced sinus surgeries a year.

“Historically, sinus surgery has been an ordeal for patients,” said Dr. Ryan. “Outdated techniques such as minimal polyp removal and sinus stripping with placement of nasal packing after surgery produced only short-term results, if any, and often required weeks of painful recovery. Some techniques highly promoted in the media like balloon sinus dilation accomplished almost nothing for the treatment of nasal polyps.”

By comparison, today’s advanced sinus surgery is vastly different. Real-time stereotactic computer-aided navigation permits safe, complete removal of polyps. Patients are asleep under general anesthesia, and the surgeon uses an endoscope – a thin tube with a camera – and specialized small tools inserted via the nostrils. There is no swelling, bruising, or other external sign that surgery has been performed.

“We pair sophisticated computer guidance with our surgical expertise,” said Dr. Ryan.

Patients usually go home the same day. Most do not feel much pain, he said, but might have some discomfort, congestion, or spotty nose bleeds for a few days.

Although nasal polyps can occur in anyone, about 25% of patients with sinus rhinosinusitis develop them, said Dr. Ryan. Small nasal polyps might not cause any symptoms, but if they grow large enough that they block the nasal passages, they can make breathing difficult and take away the sense of smell, he added.

“Polyps are the result of chronic inflammation, though we don’t yet understand what triggers their development and how to recognize or treat these patients,” said Dr. Ryan. “Certain conditions such as allergies, cystic fibrosis, aspirin sensitivity, and fungal infection sinus infection have been shown to increase the risk of developing nasal polyps. But in most instances, there is no single treatment that constitutes a ‘cure’ for the disease.”

While polyps can be removed, there is a chance they can return. For patients suffering now, surgery can make a significant difference, he said. “They can breathe easier and sleep better, which means they can get back to enjoying their lives – and we are honored to be a part of making that happen,” said Dr. Ryan.

By Matthew Ryan, M.D., and his colleagues are experts in functional endoscopic sinus surgery (FESS), which combines their knowledge of the delicate sinus cavities and nearby structures with the latest technology to remove nasal polyps.

By Jan Jarvis

For those with nasal polyps, advances in technology promise to make breathing easier, including a minimally invasive endoscopic procedure called functional endoscopic sinus surgery (FESS) performed at UT Southwestern that removes polyps and is more effective than other procedures such as balloon sinus dilation.

For the 4% of adults who have nasal polyps, the surgery offers relief from congestion and nasal obstructions may restore the sense of smell, and reduces snoring and other symptoms, said Matthew Ryan, M.D., Professor of Otolaryngology – Head and Neck Surgery, who with his colleagues performs more than 700 advanced sinus surgeries a year.

“Historically, sinus surgery has been an ordeal for patients,” said Dr. Ryan. “Outdated techniques such as minimal polyp removal and sinus stripping with placement of nasal packing after surgery produced only short-term results, if any, and often required weeks of painful recovery. Some techniques highly promoted in the media like balloon sinus dilation accomplished almost nothing for the treatment of nasal polyps.”

By comparison, today’s advanced sinus surgery is vastly different. Real-time stereotactic computer-aided navigation permits safe, complete removal of polyps. Patients are asleep under general anesthesia, and the surgeon uses an endoscope – a thin tube with a camera – and specialized small tools inserted via the nostrils. There is no swelling, bruising, or other external sign that surgery has been performed.

“We pair sophisticated computer guidance with our surgical expertise,” said Dr. Ryan.

Patients usually go home the same day. Most do not feel much pain, he said, but might have some discomfort, congestion, or spotty nose bleeds for a few days.

Although nasal polyps can occur in anyone, about 25% of patients with sinus rhinosinusitis develop them, said Dr. Ryan. Small nasal polyps might not cause any symptoms, but if they grow large enough that they block the nasal passages, they can make breathing difficult and take away the sense of smell, he added.

“Polyps are the result of chronic inflammation, though we don’t yet understand what triggers their development and how to recognize or treat these patients,” said Dr. Ryan. “Certain conditions such as allergies, cystic fibrosis, aspirin sensitivity, and fungal infection sinus infection have been shown to increase the risk of developing nasal polyps. But in most instances, there is no single treatment that constitutes a ‘cure’ for the disease.”

While polyps can be removed, there is a chance they can return. For patients suffering now, surgery can make a significant difference, he said. “They can breathe easier and sleep better, which means they can get back to enjoying their lives – and we are honored to be a part of making that happen,” said Dr. Ryan.

By Matthew Ryan, M.D., and his colleagues are experts in functional endoscopic sinus surgery (FESS), which combines their knowledge of the delicate sinus cavities and nearby structures with the latest technology to remove nasal polyps.
Olivia Russell, M.D., completed the UT Southwestern Medical School in 2018 in training for a fellowship in neonatal-perinatal medicine.

By Rachel Stone Master

The challenges of the pandemic this past year did not hinder UT Southwestern SACNAS chapter's commitment to service, diversity, and inclusivity. The group remained steadfast in its mission to inspire underrepresented minority students to pursue careers in STEM, launching outreach efforts to alleviate COVID-19 vaccinations and creating virtual events to thank clinical workers.

In October, the chapter received a 2021 SACNAS Chapter Award in Outreach in 2019 and 2020. SACNAS celebrates science and culture in a welcoming and inclusive environment. It is a unique experience where students and faculty feel comfortable to talk about their experiences.

They are the future generation of physicians and scientists who can improve the health of society. The chapter actively promotes diversity and inclusion in the scientific community. SACNAS is an organization that offers professional development opportunities, networking events, and research grants. They encourage students from minority backgrounds to pursue careers in science and medicine.

Olivia Russell, M.D., who grew up in a single-parent household and worked summers since the age of 16 to help support her family and herself, said she would not be an MD today if it wasn't for JAMP. “All JAMP members come from economically disadvantaged backgrounds and have firsthand experience in how health care disparities affect our communities and family members,” she said.

“JAMP helps students acquire the skills and knowledge to be successful future physicians by providing mentoring, summer enrichment programs, and guaranteed acceptance to one of 13 participating Texas medical schools,” said Benjamin Nguyen, M.D., Professor of Physical Medicine and Rehabilitation at UT Southwestern and current Chair of the JAMP Council.

But I had no idea what applying for medical school would entail or even how to do it.

The 2019 UT Austin graduate found the guidance he needed through the Joint Admission Medical Program (JAMP), a state-funded initiative that provides support and encourages economically disadvantaged students to matriculate into medical school.

“Coming from a third-world country has influenced me to want to work with a Spanish-speaking population, which luckily is abundant in Dallas,” said Mr. Parrilla, who is pursuing a career in family medicine as a specialty.

Established by the Texas Legislature in 2001, JAMP provides a pathway to medical school for economically disadvantaged students. Through a variety of services including guidance, assistance from participating Texas medical schools, eligible applicants are interviewed, and then 100 are accepted statewide into the program.

By date I could be for medical school,” said the fourth-year UT Southwestern medical student. Ms. Tran, who also graduated from UT Austin, was able to join the JAMP program through college orientation. Then Ms. Tran knew instantly what was her future. “The program provided me with mentorships from physicians and medical students, as well as MCAT preparation courses that together helped me become the best candidate I could be for medical school,” said the fourth-year UT Southwestern medical student. Ms. Tran, who also graduated from UT Austin, was able to join the JAMP program through college orientation. Then Ms. Tran knew instantly what was her future. “The program provided me with mentorships from physicians and medical students, as well as MCAT preparation courses that together helped me become the best candidate I could be for medical school,” said the fourth-year UT Southwestern medical student. Ms. Tran, who also graduated from UT Austin, was able to join the JAMP program through college orientation. Then Ms. Tran knew instantly what was her future.

“Having the guidance of my fellow JAMPers, I have gained firsthand the value that our SACNAS chapter brings to our community and the importance of creating a sense of belonging in our members’ well-being and professional development,” said the UT Southwestern chapter, which was founded by six Hispanic graduate students with goals to bolster the confidence of young researchers in order to retain underrepresented minority PhD students in science, build a UT Southwestern community that supports minority students’ PhD education, and develop outreach efforts to increase representation of underrepresented minorities in STEM.

The chapter participated in the Dallas ISD STEM Expo in 2019. Photo taken pre-pandemic.