UT Southwestern is ranked among the top hospitals nationally in nine specialties that range from brain to heart care.
By Christen Brownlee

UT Southwestern researchers Zhijian “James” Chen, Ph.D., and Sihan Wu, Ph.D., are part of a team that has been awarded a Cancer Grand Challenges grant, a unique award that aims to solve some of cancer’s toughest problems by bringing together global teams with diverse areas of expertise.

The initiative, founded by Cancer Research UK and the National Cancer Institute, will provide 20 million pounds—equivalent to about $25 million—over five years to Drs. Chen and Wu and colleagues from the U.S., U.K., and Germany to learn more about a phenomenon known as extrachromosomal DNA (ecDNA) – circular pieces of DNA that exist outside of a cell’s main DNA bound together in chromosomes.

“It’s a great honor to be part of this stellar team, but it’s also a large responsibility to be entrusted with a lot of resources to solve a difficult problem in cancer biology,” said Dr. Chen, Professor of Molecular Biology and Director of the Center for Inflammation Research at UT Southwestern, a Howard Hughes Medical Institute Investigator, and winner of the 2019 Breakthrough Prize in Life Sciences. Dr. Chen is one of the world’s leading investigators of innate immunity. His discovery of the cyclic GMP-AMP (cGAS) synthase enzyme, which triggers a pathway that activates the body’s immune system, has opened the door for development of drugs designed to modulate an immune response and fight diseases such as lupus and cancer.

“It’s a unique and unprecedented opportunity to conduct multidisciplinary studies focusing on ecDNA, to understand how ecDNA-driven cancers interact with the immune system,” said Dr. Wu, Assistant Professor at Children’s Medical Center Research Institute at UTSW. Dr. Wu, a leading scientist in the ecDNA field, is one of the pioneers who revealed the physical shape and molecular functions of ecDNA in cancer, laying the foundation for the modern biology of ecDNA.

Dr. Chen and Dr. Wu, both members of the Harold C. Simmons Comprehensive Cancer Center, plan to use the funds from Cancer Grand Challenges to better understand whether cGAS detects ecDNA. One of the mysteries of ecDNA in cancers, Dr. Chen explained, is why it does not trigger immune activity. The two scientists aim to discover what mechanisms cancer cells use to evade immune detection, which eventually could lead to new ways to treat cancers with immunotherapy.

Their team is led by Paul Mischel, M.D., Professor of Pathology at Stanford University, and includes scientists from University of California San Diego, The Scripps Research Institute, Fred Hutchinson Cancer Center, New York University Langone Health, Jackson Laboratory for Genomic Medicine, University College London, Queen Mary University of London, University of Cambridge, University College London, and Max Delbrück Center for Molecular Medicine, and Chanti Belfin.

Dr. Chen holds the George L. MacGregor Distinguished Chair in Biomedical Science. Dr. Wu is a Cancer Prevention and Research Institute of Texas (CPRIT) scholar.

Campus events celebrate employee service, diversity, and inclusion

From Staff Reports

Members of the UT Southwestern community celebrated longtime employee service and a commitment to diversity and inclusion in a series of signature events in May and June.

On May 23, a hybrid event on South Campus celebrated Asian Pacific American Heritage Month to be held this year in the Asian-Pacific Islander community who have risen above challenges throughout history. The second annual event was hosted by the Asian-Pacific Islander Business Network Group (AP-BBN) and the Office of Institutional Equity & Access. Keynote speaker Thomas Rajan, Vice President, Global Talent, Benefits, and Retirement for American Airlines, spoke about the abilities within all of us to make a difference to help others along their life journeys.

For Employee Recognition Week, one of the highlights on June 7 was the annual Quarter Century Club celebration honoring employees who had reached the milestone of 25 years of service or five-year milestones thereafter. Events took place campuswide during the week of June 6-10. Also in June, UTSW community members demonstrated their support for the LGBTQ community during Pride Month. Events included a June 5 brunch on Dr. Donald Seldin Plaza that concluded with UTSW students, staff, and faculty participating in the Dallas Pride parade for the first time. This event was sponsored by the Office of Institutional Equity & Access’ Division of Diversity & Inclusion, the Office of Student Diversity & Inclusion, and the LGBT & Allies Business Resource Group.

On June 13, the Pride Month Signature Celebration took place at Villanueva of P. Clements Jr. University Hospital. Keynote speaker Jaime-Almandoz, M.D., M.B.A., Associate Professor of Internal Medicine, encouraged members of the LGBTQ community to take pride in themselves amid continued challenges for societal acceptance, and work toward elimination of discrimination.

More than 300 members of the UTSW community and friends walked in the Dallas Pride parade to show their support for the LGBTQI community.

A visitor to the Cuisines of Asia event points to his home country, India, on a map of Asian Pacific Islander countries on display to demonstrate the world’s one family at UT Southwestern.

Wukich honored for work on diabetic limb salvage

In recognition of his work advancing diabetic limb salvage, Chair of Orthopaedic Surgery Dane Wukich, M.D., has received the MedStar Georgetown Distinguished Achievement Award in Diabetes Care at MedStar Georgetown University Hospital.

Dr. Wukich, who is known globally for his ability to reconstruct dislocated foot and ankle bones that result from a serious diabetic complication called Charcot arthropathy, thus avoiding amputation, received the award at the annual Diabetic Limb Salvage Conference in Washington, D.C.

Because few orthopaedic surgeons are comfortable treating diabetic foot wounds, as many as one-third of Dr. Wukich’s patients have diabetes.

“These are really difficult surgeries with high complication rates,” he said of diabetic-related infections and ankle bone operations. “Healing wounds, even from surgery, is a challenge for these patients, and they can’t feel any aching or blisters caused by the surgeries we use. We see them several times post-op and then annually for the rest of their lives.”

Blockage or narrowing of the arteries that perfuse the extremities, known as peripheral arterial disease, is a common manifestation of Type 1 and Type 2 diabetes. This limited blood flow disrupts immune system access to the lower legs and toes, predisposing ordinary cuts and blisters to dangerous infections. The limited blood flow can also cause neuropathy, which prevents the patient from feeling and treating these infections.

At UT Southwestern, a multidisciplinary team of physicians is proving that many amputations are preventable through coordinated intervention and innovative treatments. Over the past decade, the percentage of patients who arrive with a diabetic foot infection and have an amputation has been cut in half, thanks to the coordinated care provided through the diabetic limb salvage program and Wound Care Clinic. The services are provided at both William P. Clements Jr. University Hospital and Parkland Memorial Hospital.

Dr. Wukich said early intervention is needed to help more patients save their limbs. “Every care physician has to start routinely examining the feet of every patient with diabetes,” he said. “The sooner we can intervene, the more limits we can save, and that translates into lives.”

Dr. Wukich holds the Charles F. Gregory Distinguished Chair in Orthopaedic Surgery.
Health System Celebration of Excellence recognizes accomplishments amid challenges of past year

By Carol Marie Cooper

Since the start of the pandemic, UT Southwestern health care professionals have vaccinated at least 168,000 patients against COVID-19, treated over 250,000 COVID-19 testing and treated 8,000 COVID patients. While those urgent needs, staff simultaneously worked to highlight clinical innovations and livestreamed for the benefit of the entire UT Southwestern community. The half-day event highlighted clinical innovations and quality improvements taking place at UT Southwestern, despite the hardships of a pandemic.

The庆典 was welcomed by Daniel K. Podolsky, M.D., President of UT Southwestern, and heard an overview of UT Southwestern’s recent accomplishments from John Warner, M.D., Distinguished President and CEO of the Health System. The keynote speaker, Marti Taylor, M.D., M.N., President and CEO of UT Southwestern Pediatric Group faculty practice, OneFifteen, an addiction treatment facility in Dayton, Ohio, talked of ways to improve trust and to build a safer, more reliable health care environment.

OneFifteen, an addiction treatment facility in Dayton, Ohio, talked of ways to improve trust and to build a safer, more reliable health care environment.

Also featured were 131 posters submitted by UT Southwestern faculty staff describing projects to improve care. A committee selected five top posters in each of four categories: People, Quality, Services, and Financial Stewardship. The overall top five finalist in each category were recognized during the event – with projects ranging from a plan to help nurses transition; success an in their new job to a program designed to prevent patient identification errors during transport.

Excellence drives growth

The number of patient visits has bounced back since fiscal year 2020, when the pandemic spread to North Texas, according to Dr. Warner. "Our inpatient volume reached over 1.5 million in 2020 from 1.6 million the year before. That number is projected to rise to almost 2.2 million in fiscal year 2022. Meanwhile, Dr. Warner said, patient telehealth visits have soared.

“Each of these efforts has only part of the story,” UT Southwestern leads with quality and service,” Dr. Warner said. “And as Dr. Podolsky shared in his opening remarks: “This study was funded by the Howard Hughes Medical Institute, Department of Neuroscience, and the Nancy and Jeremy Hackworth, Susan and Theodore Strauss Professorship in Cardiology. More online: To watch videos of the program and read the full story, visit our website at utsouthwestern.edu/stories.

Dr. Podolsky holds the Philip O'Brien Montgomery, Jr., M.D. Distinguished Presidential Chair in Academic Administration, and the Donald W. and Barbara D. Marmon Distinguished Chair in Medical Science.

Dr. Warner holds the Jim and Norma Smith Distinguished Chair in Pediatric Oncology and the Nancy and Jeremy Hackworth, Susan and Theodore Strauss Professorship in Cardiology.

More online: To read the full story in the newsroom at utsouthwestern.edu/newsroom.

UTSW’s Simmons Cancer Center is the only NCI-designated comprehensive cancer center in the region – one of 53 in the nation, placing it among the top 4% of the approximately 1,500 cancer centers in the U.S. UT Southwestern is designated an Advanced Comprehensive Stroke Center by the Joint Commission and the American Heart Association/American Stroke Association, and has one of the nation’s leading epilepsy clinics – a Level 4 center, the highest possible level by the National Association of Epilepsy Centers – part of the O’Donnell Brain Institute.

Dr. Warner holds the Jim and Norma Smith Distinguished Chair in Pediatric Oncology, and the Nancy and Jeremy Hackworth, Susan and Theodore Strauss Professorship in Cardiology.
By Sarah Williams

For three decades, scientists have debated the underlying cause of Gulf War Illness (GWI), a collection of symptoms affecting Persian Gulf War veterans. Now a research team led by Robert Haley, M.D., Professor of Internal Medicine, has shown that the nerve gas sarin was largely responsible for the syndrome. The findings were published recently in Environmental Health Perspectives, a peer-reviewed journal supported by the U.S. National Institute of Environmental Health Sciences.

Dr. Haley’s research group discovered that veterans with exposure to sarin were more likely to develop GWI than those who were exposed to other nerve agents.

“Quite simply, our findings prove that Gulf War illness was caused by sarin,” said Dr. Haley, a medical epidemiologist who has been investigating GWI for 28 years.

More than a quarter of the U.S. and allied veterans who served in the war have reported a range of chronic symptoms, including fatigue, pain, skin rashes, hair loss, and concentration problems, difficulty finding words, diarrhea, sexual dysfunction, and chronic body pain.

Both academic researchers and those with GWI have called for greater study of Veterans Affairs to have a list of possible causes of GWI ranging from physical illness to environmental interaction. The U.S. military confirmed that chemical agents, including sarin, were detected in Iraq during the Gulf War. The UT Southwestern study linked exposure to sarin as the cause of Gulf War illness.

Over the years, studies have shown that vets who were exposed to sarin were more likely to develop symptoms of GWI than those who were exposed to other nerve agents.

“It is not a question of whether there are biomarkers to detect sarin exposure,” said Dr. Haley. “It is a question of whether there are biomarkers to detect sarin exposure.”

In the new paper, Dr. Haley and his colleagues studied 808 deployed veterans with GWI and 508 deployed veterans who did not develop any GWI symptoms, all randomly selected from veterans who completed the U.S. Military Health Survey.

The results showed that veterans with GWI and 508 deployed veterans who did not develop any GWI symptoms, all randomly selected from veterans who completed the U.S. Military Health Survey.

“Quite simply, our findings prove that Gulf War illness was caused by sarin,” said Dr. Haley. A collaborative study from UT Southwestern Medical Center and the VA showed that veterans who served in Iraq had a higher risk of developing GWI than those who served in other countries.

Dr. Haley and a colleague reported a large study testing veteran’s urine for deuterium that was used to study GWI in veterans during the Gulf War. In particular, satellite imagery documented a large deuterium cloud rising from an Iraqi chemical weapons storage site bombarded by U.S. and coalition aircraft and transversing over U.S. troop positions where it set off thousands of nerve gas alarms and was confirmed to contain sarin.

Previous studies have found an association between GWI and the presence of sarin in veterans who reported exposure to sarin. However, some critics have raised questions of small bias, including whether veterans with GWI are simply more likely to report and remember exposure due to their assumption that it may be linked to exposure to sarin.
UT Southwestern honored for Fulbright student involvement

UT Southwestern is among the Top Producing Institutions of 2021-2022 Fulbright Students in the U.S. and one of the top producers of U.S. Fulbright students among four-year, special-focus institutions. The Fulbright U.S. Scholar and Fulbright U.S. Student Programs, sponsored by the U.S. Department of State’s Bureau of Educational and Cultural Affairs, provide grants to students, faculty members, scientists, and others to support academic exchanges between the United States and more than 150 countries based on academic merit and leadership potential. “This achievement is a testament to your institution’s deep commitment to international exchange and to building lasting connections between the people of the United States and the people of other countries,” wrote U.S. Secretary of State Antony J. Blinken in a congratulatory letter to Daniel K. Podolsky, M.D., President of UT Southwestern. “The University of Texas Southwestern Medical Center’s place among the Fulbright Program’s 2021-2022 Top Producing Institutions clearly demonstrates your dedication to preparing Americans to thrive in the global economy and serve as engaged citizens.”

“The number of Fulbright Scholars and Students over the years – along with other prestigious scholarships and honors earned by our learners, trainees, and faculty – reflects the high quality of UT Southwestern’s education mission, as well as on the physicians and scientists who matriculate from our programs,” said W. P. Andrew Lee, M.D., Executive Vice President for Academic Affairs, Provost, and Dean, UT Southwestern Medical School. UT Southwestern’s involvement in the Fulbright program launched with Adolph Giesecke Jr., M.D., an Associate Professor of Anesthesiology, working at the Universitat Mainz in Germany for the 1970-71 academic year. Over the decades, UT Southwestern’s Fulbright students and scholars have spanned nearly a dozen countries – ranging from New Zealand to Germany. The University’s most recent Fulbright Students are medical students Kaley Desher, who recently matched in pediatrics to Emory, and Angela Wang, who continues her investigations on campus. “These are stellar students who are going to make an impact in whatever they do,” said Mary Chang, M.D., M.P.H., Assistant Professor of Emergency Medicine, who leads Global Health Education in UT Southwestern’s Office of Global Health, which has supported global health activities for more than 833 students in 35 countries since 2010.

Dr. Lee holds the Atticus James Gill, M.D. Chair in Medical Science. Dr. Podolsky holds the Philip O’Bryan Montgomery, Jr., M.D. Distinguished Presidential Chair in Academic Administration, and the Doris and Bryan Wildenthal Distinguished Chair in Medical Science.
Graduate student Akansha Shah has received the 2022 Ida M. Green Award in recognition of her pediatric tumor research and leadership achievements.

With other regulatory mechanisms that maintain growth of rhabdomyosarcoma tumors and showed that the depletion of Twist2 shifts the tumor toward differentiation in muscle tissue.

Although her passion is research, Ms. Shah is equally dedicated to making a difference in the community. "I have had the privilege to be supported by exceptional mentors who provided me with space and guidance for academic and personal growth," she said. "I am motivated by that to contribute to the scientific community and encourage younger generations of women in science to follow their ambitions as I was able to pursue mine." Ms. Shah is also mentored by Ning Liu, Ph.D., Associate Professor of Molecular Biology, and Rhonda Bassel-Duby, Ph.D., Professor of Molecular Biology, and has worked closely with both of them to expand the study of rhabdomyosarcoma in the Olson lab.

At UT Southwestern, Ms. Shah is committed to supporting her fellow students by establishing new opportunities for career development and academic growth. As President of the Biotechnology Club, she has invited professionals from various life sciences industries to offer their insights and career advice.

Ms. Shah led an effort to bring the Three Minute Thesis (3MT) competition to UT Southwestern. The competition allows graduate students to present their thesis work to a broad audience, improving their public speaking and communication skills. In addition, Ms. Shah has been actively involved in community outreach. As a member of the Graduate Student Organization (GSO), Lead- ership Board, she has organized volunteering opportunities such as the Habitat for Humanity Build Day. She also has served as a mentor and judge at the International Genetics Engineering Machine (iGEM) competition for undergraduate students interested in synthetic biology.

Born in India and raised in Thailand, Ms. Shah completed her undergraduate studies in biochemistry and biotechnology and then a Master of Philosophy in biomedical sciences, both at the University of Hong Kong. In Hong Kong, she also served as a tutor and graduate teaching assistant. When she traveled to the United States for two scientific conferences, Ms. Shah was captivated by the cutting-edge science and research opportunities available here. She came to UT Southwestern in hopes of contributing to its history of groundbreaking research and collaborative science.

The Ida M. Green Award, which was established in 1987, comes with a monetary award provided by the Women in Science and Medicine Advisory Committee and Southwestern Medical Foundation.

Ms. Shah said she is deeply honored to be recognized by the award that she sees as an inspiration for her continued commitment toward collaboration, mentorship, and service in the research community and beyond. "I've learned that if you listen, keep an open mind, and motivate people who will help you to execute your vision, there are always ways to give back to the community," she said.
On May 19, the UT Southwestern Graduate School of Biomedical Sciences held its graduation in the Tom and Lula Gooch Auditorium on South Campus. Eighty-nine students earned doctorate or master’s degrees in commencement exercises that recognized 2021 and 2022 graduates. David Russell, Ph.D., Professor Emeritus of Molecular Genetics and former Dean of Research, delivered the commencement address. See photo highlights from the celebration below.

More online:
To see more photos from the commencement ceremony, go to Center Times Plus at utsouthwestern.edu/ctplus.

UT Southwestern Graduate School of Biomedical Sciences Candidates for Degrees

DOCTOR OF PHILOSOPHY

- Biological Chemistry
 - Alberto Bramaitz Enríquez
 - Wen Chuan Hsieh
 - Zane Miller Johnson
 - William Peeples
 - Anna Maurine Scarborough
 - DaNae Rochelle Woodard

- Biomedical Engineering
 - Anjali Balagopal
 - Lukas J. Farbiak
 - Tianshi Lu
 - Junjie Ma
 - Lin Ma
 - David Hamilton Saucier
 - Qi Wang
 - Yiming Wang

- Cancer Biology
 - Emily Nicole Arner
 - Huayu Li
 - Austin Bradley Moore

- Cell and Molecular Biology
 - Amanda Goldner
 - Xuxia Jiang
 - Victor Antonio Lopez
 - Brendon Chul Park
 - Carlos Alberto Paz
 - Whitney Leigh Stuard

- Clinical Psychology
 - Tahnee Tarkenton Allen
 - Carolyn Kaniko Casull
 - Mariele Heather Collins
 - Laura Alexander Frazee
 - Jessica Anne Harper
 - Saha Saloom Masoud
 - Ashlyn Alyce Parides

- Genetics, Development, and Disease
 - Ningyun Cheng
 - Andrew Seungjae Chung
 - Mingjian Du

- Immunology
 - Ian Nicholas Boys
 - Fatma Sevde Coskun
 - Eric Jonathan Hou
 - Margaret Rae McDaniel
 - Benjamin Il Moon
 - Casey Elizabeth Moore

- Molecular Biophysics
 - Paul Joseph Blanck
 - Whitney Nicole Costello
 - Nicholas Paul Lesner

- Molecular Microbiology
 - Rachael Chantin

- Neuroscience
 - Yuh Tarring Chen
 - Jun Guo
 - Patricia Mary Horvath
 - Mark Lundy

- Organic Chemistry
 - Vainsnavi Narayanan Nair

MASTER OF SCIENCE

- Biological Chemistry
 - Elsa Lin

- Biomedical Engineering
 - Joel Liu

- Cell and Molecular Biology
 - Katerina Lynn Dague

- Biomedical Engineering
 - Joel Liou

- Cancer Biology
 - Elisa Lin

- Cell and Molecular Biology
 - Katerina Lynn Dague

- Clinical Psychology
 - Sunny Li

- Genetics, Development, and Disease
 - Sunil Ali

- Immunology
 - Zhe Zhang

- Molecular Biophysics
 - Paul Joseph Blanck

- Molecular Microbiology
 - Rachael Chantin

- Neuroscience
 - Yuh Tarring Chen

- Organic Chemistry
 - Vainsnavi Narayanan Nair

- UT Southwestern Graduate School of Biomedical Sciences Class of 2022 celebrates commencement
Radiofrequency ablation offers a nonsurgical treatment for thyroid nodules

By Cathy Frisinger

Iram Hussain, M.D.

When Vickie Bell-Percival was offered the chance to have a nodule on her thyroid removed, she didn’t hesitate. The technique called radiofrequency ablation (RFA), she didn’t hesitate.

One attractive aspect of RFA, she didn’t hesitate. My concerns were how invasive the treatment would be and how much time it would take to heal. I also wanted it done quickly. My doctor said she could schedule the ablation for Friday and – boom shakalaka! – it was done,” Mrs. Bell-Percival said. Earlier this year, Mrs. Bell-Percival became the first UT Southwestern patient to undergo RFA for her thyroid nodule. Although being the first made her experience different from the usual experience, Mrs. Bell-Percival, 68, a busy IT worker and matriarch of a large family, is typical of patients who will opt for this treatment over surgery. By Patrick Wascovich

Thyroid nodules – lumps that occur in the butterfly-shaped gland at the base of the neck – are so common that nearly half the population will develop one by age 60. They are more common in women than men and more likely to occur as people age. Although most thyroid nodules are noncancerous, common thyroid problems can cause health problems, including persistent coughing, hoarseness, and difficulty understanding what others are saying, and developing nodules can be disfiguring as well.

RFA uses an electrode with high-frequency alternating current to burn the tissue, to destroy cells and shrink the treated part over time, explained endocrinologist Humuss, M.D., Assistant Professor of Internal Medicine: Dr. Hussain, who was Mrs. Bell-Percival’s treating physician, is a member of the Harold C. Simmons Comprehensive Cancer Center and specializes in treating thyroid nodules. “We use ultrasound guidance with a parallel approach through the procedure so we can see the entire needle in real time, reducing the risk of complications,” Dr. Hussain said. “RFA has several advantages over surgery. The patient won’t need general anesthesia, won’t have an incision or scarring, won’t need thyroid medicine, and will be able to resume their normal routines in a shorter time.” Dr. Hussain said it was being used to treat liver tumors, varicose veins, and other conditions. Since it received FDA approval in 2018, a handful of medical centers, including UT Southwestern, have begun using the technique to treat benign thyroid nodules as well.

Mrs. Bell-Percival’s nodule, which was without symptoms at first, was discovered by another UT Southwestern physician, G. Sunny Sharma, M.D., Assistant Professor of Physical Medicine and Rehabilitation, who was treating her for back and neck pain. “Dr. Sharma did some X-rays and discovered the nodule. I’m so grateful to him for finding the nodule and for then referring me to Dr. Hussain. I love the way UT Southwestern works together,” Mrs. Bell-Percival said.

Raynor Continued from page 1

with many neurodevelopmental disorders, including autism, and is considered a contributor to motor, cognitive, and behavioral challenges.

The Raynor Cerebellum Project was established through the support of Geoffrey Raynor, founder of the One Upon a Time Foundation. The project intends to bring together the world’s top experts in cerebellar research and care to launch a broad range of scientific investigations – from basic cardio to translational studies with patients aimed at identifying and evaluating potential therapeutic targets. “Mounting evidence over the past decade has pointed to a role for the cerebellum in cognitive and social skills,” said Daniel K. Podolsky, M.D., President of UT Southwestern. “The bold vision of the Foundation’s Raynor Cerebellum Project will allow UT Southwestern to bring together the needed expertise, collaboration, and technological prowess to advance scientific understanding and clinical insight with the goal of developing effective therapies for cerebellar disease and ultimately preventing cerebellar dysfunction in both children and adults.”

The Raynor Cerebellum Project will leverage investments made at UT Southwestern’s Peter O’Donnell Jr. Brain Institute (POBI) and UT Southwestern’s Center for Human Genetic Research. The center is a leader in cerebellar research, having launched in 2017 with the goal of identifying and understanding genetic causes of cerebellar disorders. “Rapid advances in several technologies – including brain genetics, and laboratory techniques enabling precise mapping and manipulations of connected brain regions – are empowering this new understanding of the cerebellum and its functions and hold great promise for future discoveries critical for better therapeutics,” said William Davison, M.D., Director of the POBI Brain Institute. “There has never been a more promising time for this kind of ambitious effort.”

The Fort Worth-based One Upon a Time Foundation has been a philanthropic partner to UT Southwestern for nearly 20 years, investing in some of the most important work underway at the Medical Center, ranging from emergency medicine to neurology research to cancer precision treatments. Previously, the Foundation has granted more than $141 million to UT Southwestern.

Dr. Petersen holds the Lois C. and Edgar M. Hoffman Distinguished Chair in Medical Science

Dr. Petersen holds the Lois C. and Edgar M. Hoffman Distinguished Chair in Medical Science. The 2018 recipient of the Undergraduate Teaching Award at UT Southwestern, Dr. Petersen has established a program of research and education designed to integrate cerebellar medicine and to train a new generation of cerebellar medicine practitioners. He serves as co-director of the cerebellum training program at UT Southwestern.

Dr. Dauer holds the Lois C. and Edgar M. Hoffman Distinguished Chair in Medical Science.

Dr. Lehmann has never been a more promising time for this kind of ambitious effort.”

“Improving our understanding of cerebellar function and dysfunction from around the world.”

“My father was a neurosurgeon, and I was a philosophy major in college,” he has always been fasci- nated with unraveling the mysteries of the brain. We are thrilled to substantially increase our giving to create the Raynor Cerebellum Project – an effort with the magnitude to change the landscape of neurological medicine forever,” Mr. Raynor said. “Existing cerebellar research has suffered from a prosecutorial approach, which has necessitated a need for focus and a streamlined path to treatment. The Raynor Cerebellum Project will be a collaboration of the best minds with a Manhattan

Dr. Raynor retired as a neurosurgeon in 2013 and dedicated his career to advancing the understanding of cerebellar dysfunction. He is the founder and chairman of the Raynor Cerebellum Project, a non-profit organization that is fund-raising to bring the best minds together to find a cure for cerebellar disease.