Endocrine Glands and the General Principles of Hormone Action

Cai Li, Ph.D.
Assistant professor
Touchstone Center for Diabetes Research
Departments of Physiology and Internal Medicine
The University of Texas Southwestern Medical Center
Dallas, TX 75390-8854

April 6, 2002
“Classical” Endocrine Glands
A more complete listing of the endocrine glands

<table>
<thead>
<tr>
<th>Endocrine gland</th>
<th>Major hormones</th>
<th>Primary target organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipose tissue</td>
<td>Leptin</td>
<td>hypothalamus</td>
</tr>
<tr>
<td>Adrenal cortex</td>
<td>Glucocorticoids</td>
<td>liver, muscle</td>
</tr>
<tr>
<td></td>
<td>Aldosterone</td>
<td>kidneys</td>
</tr>
<tr>
<td>Adrenal medulla</td>
<td>Epinephrine</td>
<td>heart, blood vessels</td>
</tr>
<tr>
<td>Heart</td>
<td>Atrial natriuretic hormones</td>
<td>kidneys</td>
</tr>
<tr>
<td>Hypothalamus</td>
<td>Releasing and inhibiting hormones</td>
<td>pituitary</td>
</tr>
<tr>
<td>Small intestine</td>
<td>Secretin, cholecystokinin</td>
<td>stomach, liver, pancreas</td>
</tr>
<tr>
<td>Islets of Langerhans</td>
<td>Insulin</td>
<td>fat, muscle, brain</td>
</tr>
<tr>
<td></td>
<td>glucagon</td>
<td>liver, fat</td>
</tr>
<tr>
<td></td>
<td>erythropoietin</td>
<td>bone marrow</td>
</tr>
<tr>
<td>Liver</td>
<td>Somatomedins</td>
<td>cartilage</td>
</tr>
<tr>
<td>Ovaries</td>
<td>estradiol, progesterone</td>
<td>repro. tract, mammary glands</td>
</tr>
<tr>
<td>Parathyroid glands</td>
<td>Parathyroid hormone</td>
<td>bone, small intestine, kidneys</td>
</tr>
<tr>
<td>Pineal gland</td>
<td>Melatonin</td>
<td>hypothalamus, ant. Pituitary endocrine glands</td>
</tr>
<tr>
<td>Pituitary, anterior</td>
<td>Trophic hormones</td>
<td>kidney, blood vessels</td>
</tr>
<tr>
<td>Pituitary, posterior</td>
<td>Antidiuretic hormone</td>
<td>uterus, mammary glands</td>
</tr>
<tr>
<td></td>
<td>oxytocin</td>
<td>small intestine</td>
</tr>
<tr>
<td>Skin</td>
<td>1,25-dihydroxy vitamin D<sub>3</sub></td>
<td>Stomach</td>
</tr>
<tr>
<td>Stomach</td>
<td>Gastrin</td>
<td>prostate, seminal vesicles</td>
</tr>
<tr>
<td>Testes</td>
<td>Testosterone</td>
<td>lymph nodes</td>
</tr>
<tr>
<td>Thymus</td>
<td>Thymosin</td>
<td>Many</td>
</tr>
<tr>
<td>Throid gland</td>
<td>T3, T4, calcitonin</td>
<td></td>
</tr>
</tbody>
</table>
Exocrine and Endocrine Glands

Connecting cells persist to form duct

Deepest cells become secretory

Connecting cells disappear

Capillary

Deepest cells remain to secrete into capillaries

Paras
Exocrine Glands and Endocrine glands

Exocrine Glands: Secrete into a duct and to the outside of a body surface

Examples: sweat, tear, saliva

Endocrine Glands: Secrete (hormone) into the blood

Hormone circulates in blood and acts at target organs where hormone receptor is expressed

Examples: insulin

Exocrine and Endocrine glands:

<table>
<thead>
<tr>
<th>Exocrine</th>
<th>Endocrine</th>
<th>Exocrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver:</td>
<td>IGF</td>
<td>Bile</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Pancreatic juice</td>
<td>insulin, glucagon, PP</td>
</tr>
</tbody>
</table>
Chemical Structure of Hormones

1. **Amines (amino acid derivatives)**
 - Tyrosine derived: epinephrine, thyroid hormones
 - Tryptophan derived: melatonin

2. **Polypeptides**
 - Insulin, leptin, ADH

3. **Glycoproteins**
 - FSH, LH

4. **Steroids (cholesterol derived)**
 - Glucocorticoids, testosterone, vitamin D
Mechanisms of Actions of Hormones

All hormones act by binding to their receptors

• Some receptors are located on the **cell surface**
 ▪ Polar hormones (insulin, leptin)

• Some receptors are located in the **cytoplasm**
 ▪ Lipophilic hormones (steroids, thyroid hormones)

• Some receptors are located in the **nucleus**
 ▪ Lipophilic hormones (TZDs, Fibrates)
Assay and Measurement of Hormones

Bioassay
Chemical assay
Radioimmunoassay (1977 Nobel prize)

Receptor binding assay (Scatchard plot)
Action of nuclear hormones

hPPARδ
(PPARγ, Nuc-1, FAAR)

hPPARα

hPPARγ₁

hPPARγ₂

Coactivators

Ligands

PPAR

RXR

AGGNCAXAGGNCA

TCCNGTXTCCNGT

Corepressors

Ligands
Actions of PPARγ, a nuclear hormone receptor

Adipose
- FA storage (FABP)
- FA oxidation (UCP3)

Muscle
- glucose oxidation (PDK4)
- FA oxidation (UCP3)

Liver
- gluconeogenesis (PEPCK)

Macrophage
- oxLDL uptake (CD36)
- CH efflux (LXRα and ABCA1)

FFA

insulin sensitization
glucose lowering
triglyceride lowering
antiatherosclerotic
antihypertensive
Regulation of hormone secretion: A simple feedback loop

↑ Blood glucose
↓
β cells in the pancreas
↓
↑ Insulin secretion
↓
↑ Uptake of blood glucose
↓ blood glucose

Liver
Muscle
Fat

Glucose
↓
Glycogen

Glucose
↓
Triglyceride
Structure of an islet
How glucose and therapeutic drugs cause insulin secretion
Two general principles of hormone action

Acts on cells containing the receptor

Action is regulated by a feedback mechanism
Overweight and NIDDM in the U.S.
Leptin: a new hormone from fat

- Made in the adipose tissues
- A polypeptide of 167 amino acids
- Product is secreted into blood
- Its receptor is found in many tissues
- Leptin deficiency causes obesity, infertility, and many other complications
Tissue distribution of leptin
Leptin gene mutation in *ob/ob* mouse

![Diagram of Leptin gene mutation in ob/ob mouse](attachment:diagram.png)

Diagram Details
- **R105 (CGA→TGA)**
- **167**
Leptin Receptor Isoforms

Long
- OB-Rb

Short
- OB-Ra
- OB-Rc
- OB-Rd

Soluble
- OB-Re
Tissue distribution of the leptin receptor

Heart
Brain
Spleen
Lung
Liver
Sk. Muscle
Kidney
Testis

Probe Length (kb)

Common 0.60
Ob-Ra 0.25
Ob-Rb 0.20
Actin 2.00
Rodent Mutations at the db Locus

Mouse
- Ob-Rb
- C57BL/KsJ db/db
- db^{3J}/db^{3J}
- db^{Pas}/db^{Pas}

Rat
- fa/fa
- fa^{k}/fa^{k}

Extracellular | TMR | Intracellular

<table>
<thead>
<tr>
<th></th>
<th>Mouse</th>
<th>Rat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ob-Rb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>db/db</td>
<td></td>
<td></td>
</tr>
<tr>
<td>db^{3J}/db^{3J}</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>db^{Pas}/db^{Pas}</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>fa/fa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fa^{k}/fa^{k}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $Q269P$
Leptin Levels in Lean and Obese Rodents

$+/+$ db/db $+/+$ fa/fa

Leptin western

Leptin northern

β-actin
Leptin levels in lean and ZDF rats
Soluble Leptin Receptor Levels in Lean and ZDF Rats

<table>
<thead>
<tr>
<th>Plasma (µl)</th>
<th>Lean</th>
<th>ZDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.W. (kDa)

- 203
- 116

OB-Re
Jak-STAT Pathway of Leptin Receptor Signal Transduction

Leptin activates the Jak-STAT pathway by phosphorylating the Jak2 protein kinases associated with the Ob-Ra and Ob-Rb receptors. This leads to the phosphorylation of STAT3, which then moves to the nucleus.
Hypothalamic signaling pathways regulating energy homeostasis
Severe postnatal obesity of a child with leptin mutation
One example of human leptin mutation
Leptin treatment of a girl with leptin deficiency
SUMMARY

• Most tissues are endocrine glands and have the capacity to secrete molecules that act on other tissues
• All hormones act by interaction with their receptors
• The action of most hormones are regulated by a negative feedback mechanism