Members of the President’s Research Council (PRC) directly engage the advancement of medical research at UT Southwestern. Joining the PRC brings opportunities to hear from internationally recognized scientists conducting high-impact research. Your membership supports promising young scientists who are the innovators of tomorrow. As a member of the PRC, you’ll be advancing the future of medicine, today.

President’s Research Council member functions and activities include:

• Supporting the annual Distinguished Researcher Awards for faculty members early in their research careers when federal grants can be difficult to obtain. Support may also be given to a past recipient named as the Mannie and Kern Wildenthal President’s Research Council Professorship in Medical Science;

• Attending four stimulating programs each year by prominent faculty researchers;

• Meeting outstanding scientists who are revolutionizing the scope and practice of medicine;

• Hosting an annual dinner with UT Southwestern President Daniel K. Podolsky, M.D., to honor the recipients of the Distinguished Researcher Awards;

• Learning about the latest advances in medical science from one of the nation’s leading institutions.

President’s Research Council programming in 2017 will be stimulating and informative. This year will offer members the opportunity to hear directly from gifted researchers who are rethinking and redefining what is possible in medical science today. Biographies of the four exciting speakers scheduled can be found on the back of this brochure.

• Activities include:

- Learning about the latest advances in medical science from one of the nation’s leading institutions.
- Hosting an annual dinner with UT Southwestern President Daniel K. Podolsky, M.D., to honor the recipients of the Distinguished Researcher Awards.
- Meeting outstanding scientists who are revolutionizing the scope and practice of medicine.
- Attending four stimulating programs each year by prominent faculty researchers.
- Supporting the annual Distinguished Researcher Awards for faculty members early in their research careers when federal grants can be difficult to obtain.

About UT Southwestern Medical Center

One of the top academic medical centers in the world, UT Southwestern is a premiere educational, clinical, and research institution with an innovative approach to medicine. Our physicians and researchers seamlessly integrate breakthroughs in science, advances in comprehensive patient care, and prestigious educational programs to improve health care in North Texas and around the world.

Consistently ranking among the top institutions for biomedical research, UT Southwestern is home to six Nobel laureates, 18 members of the National Academy of Medicine (formerly the Institute of Medicine), and 22 members of the National Academy of Engineering.

UT Southwestern is a premier leader in medical research, UT Southwestern is home to six Nobel laureates, 18 members of the National Academy of Medicine (formerly the Institute of Medicine), and 22 members of the National Academy of Engineering.

President’s Research Council Co-chairs

Sue and Joe Graham

Isma and Irwin Grossman

Jacqueline and Richard Grute

Lorraine and John J. Gunan

Rosan S. and Richard E. Gutman

Sandi and Ron W. Haddock

Carol F. Hall

Karen and Charles M. Hansen, Jr.

Jan and Bruce H. Haeberle*

Richard Hardison

Linda W. Hart

M. Mildeberg A. Harris

Sarah and Judy Haven

Jan and Fredericks B. Heg Jr.

Carol and Jeff Neller

Aurelia and Brad Hopper

Mona Herd-Cochran

Susan S. and Forrest C. Hicks*

Lyda Hill

Anne and George Howard

Vicki and G. Duway Howland

Frieda and Bob Hudspeth*

Vester T. Hughes Jr.

Gerald and Richard Irwin

Sue and Mike Karrin

Jean and Jack Kirkham

Patti and Tom Kiernan

Carole and Jack Kinnebrew

Samara Klbe and Andy McCarthy

Rita Koger

Joyce and Howard Kom

Suzanne and Robert Kricunus

Cate and Ford Lacy*

Sally and Olin Lane

Mary Lois and J. Sloan Leonard* Donna and Anthony J. Levedico

Ann and Waymon Levell

Richard C. Leon

Barbara and Franklin R. Lloyd* Sharon Lyte and

Joy and Ron Mankoff

Lynnda Bass

Judy and Bentley M. Markay

Charlton and Tom M. Marsh

David and F. Martinez

Becky and James P. McCullough

Effie and Tom McCullough

Margaret McDermott

Brenda B. and

M. Joseph McCaughey

Annie McManus and

Em Ilourie McCry* Erika and Bob Finegan

Gloria and Henry Fleischer*

Reba and Ralph T. Fellert

Amy and Lee Fikes

Annette and Bob Finegan

Mary and Rick Bush

Estrella and Luis Campos

Bitty and Harold Carter

Dorothy and Marlene Lampkin

Mary and Bill Covera

Bev and Martin Cobin

B. J. Coffman

Jean and George Coleman*

Suzeen Collmer

Mary McDermott Cook

Nancy and Barry Crossman

Clara M. Davis

Peggy S. Dear

Anne and Brian Dethrow

Barbara and Kenneth Dickinson

Carolyn and Bob Dickson

Ann and Mitchell Bell Duplin*

Pat and Ed Ducayet*

Miriam and Mitchell Bell Dunizminski

LaVonne M. Dutton

Laurie Dutton

Ann and Charles W. Eissmann

Alina and Rubin Ezquerre

Sandra and Henry Estes

Eliane and Mike Faries

Kathy and Jennifer Ferrel

Pamela and Don Finlay

Bob and Richard Feely

Reba and Ralph T. Ferrer

Amy and Lee Fikes

Annette and Bob Finegan

Gloria and Henry Fleischer*

Reba and Ralph T. Ferrer

Amy and Lee Fikes

Annette and Bob Finegan

Gloria and Henry Fleischer*

Mand T. Floss

Peter Fonberg

Margaret McDermott

Brenda B. and

M. Joseph McCaughey

Annie McManus and

Em Ilourie McCry* Erika and Bob Finegan

Gloria and Henry Fleischer*

Reba and Ralph T. Ferrer

Amy and Lee Fikes

Annette and Bob Finegan

Gloria and Henry Fleischer*

Mand T. Floss

Peter Fonberg

Margaret McDermott

Brenda B. and

M. Joseph McCaughey

Annie McManus and

Em Ilourie McCry* Erika and Bob Finegan

Gloria and Henry Fleischer*
Understanding How Our Bodies Move
January 31, 2017

Dr. Todd Roberts, Ph.D., Assistant Professor, Department of Neuroscience; Thomas O. Hicks Scholar in Medical Research

Dr. Todd Roberts is working to understand the brain mechanisms that allow young animals to learn from one another and imitate the behavior of their elders. This form of learning is particularly relevant for acquiring social and vocal communication skills. In people, learning speech and language relies on our ability to emulate the behavior of our parents and other role models during childhood. Dr. Roberts' research group is focused on understanding how animals, like songbirds, learn complex vocal behaviors through imitation.

Songbirds are a powerful model for studying vocal learning because they initially learn their songs by imitating a parent's song. Studying this form of vocal learning provides entry points for understanding human disabilities of speech and vocal communication that often result from developmental brain disorders like autism.

"The details of song and speech learning have strong behavioral parallels, including similar transitions from babbling to the acquisition of vocal syllables," Dr. Roberts said. "We're examining how changes to circuits in the brain underlie this form of learning and how divergent pathways in the brain control the learning of different aspects of these vocalizations. The songbird has allowed us to explore these basic questions in a way that hasn't really been done before."

Dr. Roberts received his Ph.D. from the University of Maryland and completed his postdoctoral research at Duke University Medical Center, where he applied novel methods for imaging and manipulating brain circuits involved in learning vocal behaviors. He joined the Department of Neuroscience at UT Southwestern in March 2013.

What Can Songbirds Teach Us About Learning?
March 7, 2017

Natural Drug Discovery From the Sea
September 12, 2017

Dr. John MacMillan, Ph.D., Associate Professor, Department of Biochemistry; Martha Steiner Professorship in Medical Research; Chilton/Bell Scholar in Biochemistry

Dr. John MacMillan is working to understand the chemical reactions necessary for movement. He is particularly interested in the enzymes that are necessary for the heart muscle to pump blood normally, and impairment of its function can be a cause of heart failure. One of the enzymes is necessary for the heart muscle to attach a phosphate to the motor protein myosin, which is essential for muscle contraction during exercise.

"Our first studies showed how myosin phosphorylation (or 'turning on' the motor protein myosin) is requisite for movement, and impairment of this mechanism can lead to diminished heart performance and failure." Dr. MacMillan said. "We're focusing on understanding how enzymes, like myosin, work to cause heart failure in smooth muscle cells to cause aortic aneurysms and diverticulitis."

Dr. MacMillan recently discovered two new enzyme regulators in smooth muscle cells that are uniquely involved in failure of heart muscle cells, and are also involved in heart muscle cell development. His research group is using these new insights into how these chemical reactions acting on myosin are involved in failure of heart muscle cells, and deranged in heart failure.

"Our first studies showed how myosin phosphorylation is necessary for movement, and impairment of this mechanism can lead to diminished heart performance and failure."

A committed academician and researcher, Dr. MacMillan has contributed extensive professional and academic service to his field and the Medical Center. He served as Chair of the Department of Physiology at UT Southwestern for 30 years and was holder of the UT Southwestern Faculty Chair in Pharmacology. He earned his Ph.D. at the University of California, Davis and now chairs the Organic Chemistry Graduate Program at UT Southwestern. He is a recipient of the Matt Suffness Award from the American Society for Pharmacognosy and the inaugural Marine Drugs New Investigator Award from UT Southwestern.

Natural Drug Discovery From the Sea
September 12, 2017

Dr. John MacMillan, Ph.D., Associate Professor, Department of Biochemistry; Martha Steiner Professorship in Medical Research; Chilton/Bell Scholar in Biochemistry

Dr. John MacMillan is working to understand the chemical reactions necessary for movement. He is particularly interested in the enzymes that are necessary for the heart muscle to pump blood normally, and impairment of its function can be a cause of heart failure. One of the enzymes is necessary for the heart muscle to attach a phosphate to the motor protein myosin, which is essential for muscle contraction during exercise.

"Our first studies showed how myosin phosphorylation (or 'turning on' the motor protein myosin) is requisite for movement, and impairment of this mechanism can lead to diminished heart performance and failure."

A committed academician and researcher, Dr. MacMillan has contributed extensive professional and academic service to his field and the Medical Center. He served as Chair of the Department of Physiology at UT Southwestern for 30 years and was holder of the UT Southwestern Faculty Chair in Pharmacology. He earned his Ph.D. at the University of California, Davis and now chairs the Organic Chemistry Graduate Program at UT Southwestern. He is a recipient of the Matt Suffness Award from the American Society for Pharmacognosy and the inaugural Marine Drugs New Investigator Award from UT Southwestern.

Natural Drug Discovery From the Sea
September 12, 2017

Dr. John MacMillan, Ph.D., Associate Professor, Department of Biochemistry; Martha Steiner Professorship in Medical Research; Chilton/Bell Scholar in Biochemistry

Dr. John MacMillan is working to understand the chemical reactions necessary for movement. He is particularly interested in the enzymes that are necessary for the heart muscle to pump blood normally, and impairment of its function can be a cause of heart failure. One of the enzymes is necessary for the heart muscle to attach a phosphate to the motor protein myosin, which is essential for muscle contraction during exercise.

"Our first studies showed how myosin phosphorylation (or 'turning on' the motor protein myosin) is requisite for movement, and impairment of this mechanism can lead to diminished heart performance and failure."

A committed academician and researcher, Dr. MacMillan has contributed extensive professional and academic service to his field and the Medical Center. He served as Chair of the Department of Physiology at UT Southwestern for 30 years and was holder of the UT Southwestern Faculty Chair in Pharmacology. He earned his Ph.D. at the University of California, Davis and now chairs the Organic Chemistry Graduate Program at UT Southwestern. He is a recipient of the Matt Suffness Award from the American Society for Pharmacognosy and the inaugural Marine Drugs New Investigator Award from UT Southwestern.