Consider the reasons...
There's a lot to consider in choosing a graduate school. The UT Southwestern Graduate School of Biomedical Sciences, Division of Basic Science, may be the perfect place for you.

Consider Our:

- World-renowned *faculty*
- Outstanding and diverse *student body*
- Groundbreaking biomedical *research*
- Collaborative, cross-disciplinary *environment*
- Cutting-edge *resources*
- Innovative approach to graduate *education*
- Dedicated, full-time career and *professional development* staff
- Competitive stipend and low *cost of living*
- Great city to call *home*

You have a lot to consider. We have a lot to offer.

What we need is YOU.
Propel Your Future

A successful career as a leader in biomedical research and education begins with a strong foundation.

UT Southwestern’s Graduate School of Biomedical Sciences offers students unsurpassed opportunities to collaborate with internationally recognized faculty, use state-of-the-art equipment in advanced labs, and participate in the discovery and transmission of knowledge to solve complex health challenges.

Here, our investigators’ discoveries form the foundation for new ways to prevent or treat disease.

Distinguished Alumnus – Linda S. Buck, Ph.D., 2004 Nobel Prize in Physiology or Medicine; Immunology Graduate Program, Dr. Ellen Vitetta lab

“...it was in Texas that I truly learned to be a scientist. I had a wonderful thesis advisor, Ellen Vitetta, who demanded excellence and precision in research, habits that I believe are important to learn as a student.”

Learn from the Best

At UT Southwestern, the exceptional education you receive — and the work you do — will make a difference.

More than 3,000 graduates have laid the foundation for a successful career here. Another 500 students are currently enrolled in the Graduate School, building their own promising path to the future.

Six UT Southwestern faculty members have won Nobel Prizes since 1985. In addition to Nobel Laureates, our faculty currently includes:

- 22 members of the National Academy of Sciences
- 18 members of the National Academy of Medicine
- 16 members of the American Academy of Arts and Sciences
- 13 Howard Hughes Medical Institute Investigators
- 2 Lasker Award recipients

Additionally, our faculty contains many members of national science policy panels and editorial boards of leading scientific journals.

At UT Southwestern, the exceptional education you receive — and the work you do — will make a difference.

More than 3,000 graduates have laid the foundation for a successful career here. Another 500 students are currently enrolled in the Graduate School, building their own promising path to the future.

Learn from the Best

The excellence of any educational institution is determined by the caliber of its faculty. UT Southwestern is considered the premier biomedical research institute in the Southwest.
Be Inspired by Your Peers

Great students make for a great graduate school experience. In the Graduate School of Biomedical Sciences, you’ll be among the best and brightest.

Our diverse, motivated student body will stimulate you intellectually and inspire you to reach your full potential. More than 1,000 well-qualified students will apply for admission for an average of 65 total available positions in 11 Ph.D. programs.

We know that outstanding people come from everywhere, so we admit students from famous, as well as lesser-known, institutions around the globe. We’ve made an ongoing commitment to grow and support diversity in the scientific community and actively recruit from populations that are historically underrepresented in the biomedical sciences, including all races and people with disabilities.

Incoming Class Five-Year Average

- 68 students entering class
- 56 percent are female
- 21 percent of U.S. citizens or permanent residents are from underrepresented backgrounds
- 3.6 average GPA
- 157 V/161 Q/3.9 W average GRE scores

Push the Envelope

UT Southwestern scientists are dedicated to finding solutions to today’s greatest challenges and to blazing a trail in biomedical research and discovery.

Scientists and physician researchers are actively investigating topics as diverse as the biology of stem cells, chemical biology, cancer genomics and proteomics, molecular imaging, the molecular basis of drug addiction, and metabolic diseases.

Here are just some of our discoveries:

Aging/Alzheimer’s

Work by Dr. Steven McKnight and colleagues identified a compound (P7C3) and demonstrated that it preserves newly created brain cells and boosts learning and memory. The study has led to further investigations into the mechanism by which P7C3 protects cells from dying and whether the compound might have any protective effect for various neurodegenerative diseases.

Cancer/Biomarkers

Drs. John Minna and Adi Gazdar have spent the past 30 years elucidating the genetic changes associated with the development of lung cancer. Their work seeks to discover these changes and use them as biomarkers both to detect lung cancer earlier and to develop new therapies. Their approach is advancing personalized medicine, which aims to target the unique characteristics of an individual’s tumor with the best current therapies.

Cancer/Stem Cells

A team led by Dr. Sean Morrison at the Children’s Medical Center Research Institute at UT Southwestern has identified the environment in which blood-forming stem cells survive and thrive within the body, an important step toward increasing the safety and effectiveness of bone marrow transplantation.

Cardiology/Regeneration

Researchers, including Drs. Eric Olson and Hesham Sadik, have pinpointed a molecular mechanism needed to unleash the heart’s ability to regenerate. They found that microRNAs – tiny strands that regulate gene expression – contribute to the heart’s ability to regenerate up to one week after birth. Soon thereafter the heart loses the ability to regenerate. Identifying the heart’s natural regenerative on-off switch is a critical step toward developing eventual therapies for damage suffered following a heart attack. Dr. Olson’s lab has also used CRISPR/Cas9 methods to cure Duchenne muscular dystrophy in mice as a proof of principle for human gene therapy.

Cancer/Stem Cells

A team led by Dr. Sean Morrison at the Children’s Medical Center Research Institute at UT Southwestern has identified the environment in which blood-forming stem cells survive and thrive within the body, an important step toward increasing the safety and effectiveness of bone marrow transplantation.

Cardiology/Regeneration

Researchers, including Drs. Eric Olson and Hesham Sadik, have pinpointed a molecular mechanism needed to unleash the heart’s ability to regenerate. They found that microRNAs – tiny strands that regulate gene expression – contribute to the heart’s ability to regenerate up to one week after birth. Soon thereafter the heart loses the ability to regenerate. Identifying the heart’s natural regenerative on-off switch is a critical step toward developing eventual therapies for damage suffered following a heart attack. Dr. Olson’s lab has also used CRISPR/Cas9 methods to cure Duchenne muscular dystrophy in mice as a proof of principle for human gene therapy.

Cholesterol

UT Southwestern researchers have identified nearly 38 disease-causing genes, including in 1983 the gene responsible for familial hypercholesterolemia, an inherited condition that causes extremely high levels of cholesterol and heart attacks at an early age. That discovery by Drs. Michael Brown and Joseph Goldstein contributed to the pair winning the 1985 Nobel Prize in Physiology or Medicine for their research uncovering the underlying mechanisms of cholesterol metabolism.

Diabetes/Obesity

Dr. Philipp Scherer’s discovery of adiponectin, a hormone produced by fat, has helped transform the scientific concept of fat as an inert storage depot to that of an endocrine “organ” that exerts control over multiple organs. His studies have revealed adiponectin’s potent anti-diabetes effects of blocking glucose production in the liver and improving insulin sensitivity in muscle. Because adiponectin levels fall as fat levels rise, drugs that increase adiponectin may be effective in fighting diabetes and other obesity-related disorders.

Human Genetics

Drs. Helen Hobbs and Jonathan Cohen are among the world’s leading experts on the genetic factors associated with lipid disorders. Their work, for which Dr. Hobbs received the 2016 Breakthrough Prize in Life Sciences, has led to the development of a new class of cholesterol-lowering drugs – PCSK9 antibodies – that are saving the lives of patients who do not tolerate or respond adequately to statins.
Innate Immunity

Scientists led by Dr. Zhijian ”James” Chen are exploring the mechanisms of signal transduction, namely how a cell communicates with its surroundings and within itself. They are focused on investigating how a cell detects harmful or foreign threats and mounts an appropriate response to restore homeostasis. Dr. Chen has made a number of seminal discoveries for which he was elected to the National Academy of Sciences, including the cytoplasmic DNA sensor cGAS and its product cGAMP, a novel cyclic dinucleotide second messenger involved in innate immune response.

Dr. Bruce Beutler received the 2011 Nobel Prize in Physiology or Medicine for his discovery that the Toll-like receptor 4 (TLR4) is the membrane-spanning component of the mammalian lipopolysaccharide receptor complex that senses microbial infection and triggers septic shock. Dr. Beutler continues to identify components of the mammalian immune system through large-scale mouse mutagenesis screens conducted in the Center for the Genetics of Host Defense, which he leads.

You’ll train with an exceptional faculty that doesn’t simply investigate breakthroughs – they create them. And you’ll learn alongside students as bright and motivated as yourself.

Gain Access to Cutting-Edge Resources

We offer more than 1 million square feet of state-of-the-art research space and 34 core lab facilities to support a rich, scholarly environment for graduate study. Our facilities and resources include:

- Analytical Ultracentrifugation
- Biostatistics
- Clinical and Translational Research Center
- Computational Biology/Bioinformatics
- Cryo-EM and Electron Microscopy
- Cyclotron and Radiochemistry
- DNA Genotyping
- DNA Microarray
- DNA Sequencing – Next-Generation and Sanger
- Flow Cytometry
- Genomics and Microarray
- High-Throughput Screening
- Human Genetics Clinical Laboratory
- Kidney Research
- Live-Cell Imaging
- Macromolecular Biophysics
- Mass Spectrometry
- Molecular and Cellular Imaging
- Mouse Metabolic Phenotyping
- Mouse MRI
- Nuclear Magnetic Resonance Spectroscopy
- Pathology
- Preclinical Pharmacology
- Protein Chemistry Technology Center
- Proteomics
- Rapid Biochemical Kinetics
- RNA Oligonucleotide Synthesis
- Rodent Behavior
- Small Animal Imaging
- Synthetic Chemistry
- Tissue Management
- Transgenic Core
- X-ray Crystallography

Experience True Collaboration

At UT Southwestern, we understand and appreciate the benefits of working together – for humanity and for ourselves as scientists and physicians in the pursuit of discovery.

The Graduate School of Biomedical Sciences has a strong tradition of collaboration among laboratories, which provides students access to expertise, techniques, and training beyond that available in their home research laboratory.

Here, collaboration is not simply a buzzword. It’s part of our culture and, we’ve found, often the most rewarding and effective means of answering important questions.
Explore an Innovative Approach to Graduate Education

We believe research training occurs primarily in the lab, not in the lecture hall. In most cases, students in the Graduate School of Biomedical Sciences complete all didactic coursework, receiving in-depth knowledge of the fundamentals of their chosen research area, during their first year of graduate studies. Students devote full attention to their dissertation research beginning in the second year as they refine their expert knowledge, improve their critical thinking skills, and master experimental techniques.

But we know that not all students are sure of their path at this point in their education. That’s why our students are not required to declare a program affiliation until after they have begun graduate school and have had the chance to explore all of the possibilities.

Curriculum Highlights

Our one-year didactic curriculum includes:

First Semester
- Proteins core course (required)
- Genes core course (required)
- Cells, Neuroscience, or Biophysics core course (determined by choice of Ph.D. program)
- Introduction to Biostatistics (required)
- Responsible conduct of research (required)
- Two or more lab rotations (required)
- Elective courses (determined by Ph.D. program)

Second Semester
- Advanced program-specific courses
- Additional lab rotations possible

Students are expected and encouraged to attend graduate program-specified seminars, journal clubs, and work-in-progress presentations throughout the first year.

Learn more about our degree plans: utsouthwestern.edu/grad-degree-plan

Ph.D. Programs – Choose from an Expansive List of Study Options

We offer 11 challenging and stimulating Ph.D. programs, along with specialized curricula in three additional areas.

Biological Chemistry Ph.D.

Training in biochemistry and molecular biology focused at the interface of chemistry and biology, with an emphasis on mechanism.

- **Research Areas**
 - Molecular mechanisms of cellular processes
 - Screening, design, and use of small molecules in biological systems and for drug discovery
 - Metabolism and metabolic regulation

Learn more: utsouthwestern.edu/grad-biological-chemistry

Advancement to Candidacy

As a graduate student, you’ll be officially admitted to Ph.D. candidacy upon:

- Successful completion of all required coursework and rotations in your first year
- Earning a passing grade on the qualifying exam during your second year

Candidate Responsibilities

- Conduct dissertation research
- Expand your oral and written communication skills
- Present your work-in-progress annually at your program seminar
- Attend all work-in-progress seminars for your program (weekly)
- Attend and present regularly at journal club
- Participate in departmental seminars
- Participate in professional development

Overnight fasting Refed for 2 hrs

- Eosinophilic stain (pink) = zymogen granules
- Fasting Refed for 2 hrs
- Zymogen granules

Phenotype of

- Eosinophilic stain (pink)
- Zymogen granules
- Fasting Refed for 2 hrs
- Zymogen granules

Learn more: utsouthwestern.edu/grad-biological-chemistry
A collaborative culture and an environment rich in resources place opportunities for learning and exploration within your reach – and success in your grasp.

Biomedical Engineering Ph.D.
With an emphasis on the development of advanced procedures and technologies that facilitate both basic biomedical research and the detection, diagnosis, and treatment of disease and disability, the program fosters translational bench-to-bedside advances in medicine. This is a joint graduate program of UT Southwestern, UT Arlington, and UT Dallas and includes more than 50 UT Southwestern faculty members from both basic science and clinical departments.

RESEARCH AREAS
- Biomedical and molecular imaging
- Biomaterials, mechanics, and tissue engineering
- Molecular and translational nanomedicine
- Medical physics

Learn More: utsouthwestern.edu/grad-biomedical-engineering

Cancer Biology Ph.D.
Up-to-date training in molecular and cellular aspects of cancer research, including cancer and development, chemistry and cancer, cancer cell networks, DNA repair and radiation biology, and molecular pathogenesis and therapeutic targeting.

RESEARCH AREAS
- Sustaining proliferative signaling
- Resisting cell death, avoiding apoptosis
- Bypassing senescence, enabling replicative immortality
- Inducing angiogenesis
- Evading growth suppressors
- Reprogramming energy metabolism
- Genome instability and mutation
- Activating invasion and metastasis
- Role of the tumor microenvironment, such as tumor-promoting inflammation and evading immune destruction

Learn More: utsouthwestern.edu/grad-cancer-biology

Cell and Molecular Biology Ph.D.
Training opportunities in the study of cellular functions ranging from basic molecular mechanisms to functional behavior in normal and disease states.

RESEARCH AREAS
- Structures and functions of signaling molecules, such as receptors, G proteins, kinases, transcription factors, adhesion proteins, cytoskeletal elements, and the ubiquitination machinery
- Organization and integration of complex signaling pathways, including roles in cancer and infectious disease
- Metabolic regulation through hormone signaling and transcription
- Drug discovery, development, and mechanisms (pharmacology training grant available)
- Evolution, regulation, and function of cellular organelles, including the nucleus, endoplasmic reticulum, Golgi apparatus, peroxisome, lysosome, and plasma membrane
- Sorting and processing of secretory and membrane-associated proteins

Learn More: utsouthwestern.edu/grad-cell-molecular-biology

Genetics, Development, and Disease Ph.D.
Applying fundamental genetics principles to dissect problems in biology and disease, including development, growth, cancer, and aging.

RESEARCH AREAS
- Human and model system genetics, including mice, zebrafish, Drosophila, and C. elegans
- Gene regulation and genetics of disease
- Stem cells and regeneration
- MicroRNAs and gene silencing
- Embryonic development and organogenesis
- Genome organization, chromatin remodeling, and epigenetics
- Cell growth and cell death
- DNA damage and repair
- Lipid and glucose metabolism

Learn More: utsouthwestern.edu/grad-genetics-and-development

Immunology Ph.D.
Training in topics that include innate immunity, host-commensal and host-pathogens interactions, autoimmune diseases, inflammatory diseases, immunodeficiencies, and adaptive immune responses.

RESEARCH AREAS
- Immune receptor signal transduction
- Autoimmune diseases
- Pathogenesis of allergy and asthma
- Cancer immunology and cancer immunotherapy
- Genetic control of immune responses
- Innate and adaptive immune responses to infections
- Tolerance and transplant immunology

Learn More: utsouthwestern.edu/grad-immunology
Integrative Biology Ph.D.
Training to understand the molecular and cellular basis of integrated biological systems, such as cells, tissues, organ systems, or whole animals.

Research Areas

- Multicellular biological systems are used to study cells and tissues in their physiological context
- Metabolism and metabolic syndromes
- Gene regulation in development and differentiation
- Biochemical pathways and their roles in physiology
- Cardiovascular and muscular function and metabolism
- Mechanism of cell signaling and behavior
- Human genetics and diseases
- Cancer biology

Learn More: utsouthwestern.edu/grad-integrative-biology

Molecular Biophysics Ph.D.
Discover principles of molecular and cellular function and evolution using an interdisciplinary set of tools encompassing structure, imaging, reconstitution, cell biology, computation, and more. We have a highly interactive faculty with diverse backgrounds, including biochemistry, physical chemistry, mathematics, theoretical physics, neurobiology, and genetics. Our resources are extensive with expertise and instrumentation for structural biology, macromolecular biophysics, light and electron microscopy, advanced computation, and next-generation sequencing.

Research Areas

- Molecular mechanisms of cellular biology
- Structural biology to discover principles and mechanisms of molecular organization and function

Learning More: utsouthwestern.edu/grad-molecular-biophysics

Molecular Microbiology Ph.D.
An integrated approach to the study of prokaryotic organisms and viruses and their interactions with hosts.

Research Areas

- Bacterial and viral pathogenesis of disease
- Identification of factors of pathogens and hosts required for infection
- Innate immune responses to bacteria and viruses
- Cellular microbiology of host-pathogen interactions
- Transcriptional regulation of bacterial gene expression
- Viral manipulation of eukaryotic host cells
- Influence of commensals on host biology

Learn More: utsouthwestern.edu/grad-molecular-microbiology

Neuroscience Ph.D.
Multidisciplinary analysis of the mechanisms underlying nervous system function.

Research Areas

- Cellular and molecular neurobiology to systems neuroscience
- Synaptic plasticity
- Mechanisms of neurotransmission and signaling
- Membrane biophysics
- Developmental neurobiology
- Mechanisms of neurodegenerative and neurodevelopmental disorders
- Molecular and cellular basis of complex behavior and neuropsychiatric disorders
- Molecular basis of circadian regulation

Learn More: utsouthwestern.edu/grad-neuroscience

Organic Chemistry Ph.D.
A unique organic chemistry Ph.D. program in the highly collaborative, cross-disciplinary environment of an academic medical center. The program complements a strong foundation in organic chemistry with a breadth of knowledge at the interface of chemistry, biology, and all biomedical sciences.

Research Areas

- Synthetic organic chemistry
- Natural products discovery
- Natural products synthesis
- Chemical biology
- Synthetic methods and catalysis
- Medicinal chemistry

Learn More: utsouthwestern.edu/grad-organic-chemistry
Specialized Curricula

Along with 11 Ph.D. programs, we offer three specialized curricula. In these courses of study, students choose one of our Ph.D. programs and complement it with their specialty interest.

Computational and Systems Biology

Using mathematical and computational techniques to understand biological and biochemical processes; the application of bioinformatics, theoretical biology, and biostatistics to questions resulting in a diverse set of subjects and biological problems.

Research Areas

- Biophysics and structural biology, including protein structure and function prediction, analysis of biological sequence and 3-D structures, macromolecular interactions and biological networks, and molecular evolution
- Genetics and genomics, including DNA polymorphism analysis, modeling of transcriptional and translational regulation of genes, genome-wide association studies of disease phenotypes, and statistical genetics
- Systems biology, including reconstruction and analysis of biological networks from high-dimensional ‘omics’ data, modeling of complex systems, and principles underlying spatiotemporal organization of molecular networks
- Imaging and signal processing, including computational analysis of image data across all scales, and statistical analysis of complex multivariate time series

Learn More: utsouthwestern.edu/grad-computational-biology

Mechanisms of Disease and Translational Science

Students will become Ph.D. scientists who gain expertise in basic and translational research. They will be empowered to accelerate bidirectional translation of scientific discoveries between the bench and bedside to improve human health. The multidisciplinary approach integrates medical knowledge into basic science training by interweaving the basic science graduate programs with longitudinal mentored clinical research experiences. This curriculum is currently supported by an NIH institutional predoctoral training grant.

Research Areas

- Cancer
- Genetics and development
- Neuroscience
- Obesity and metabolism
- Cardiovascular diseases
- Immunity and infection
- Mechanisms of drug action
- Tissue regeneration
- Biomedical engineering

Learn More: utsouthwestern.edu/grad-mechanisms-of-disease

Pharmacological Sciences

Pharmacological Sciences is an interdisciplinary area emphasizing discovery, development, and the molecular and physiological mechanisms of therapeutic agents. The goal is to provide an appropriate foundation for students who plan to pursue careers in pharmaceutical sciences and related areas in academia, medicine, or industry. This curriculum is currently supported by an NIH institutional predoctoral training grant.

Research Areas

- Molecular and physiological mechanisms of drug action, including receptor dynamics, drug metabolism, and the physiological basis for selected classes of therapeutics
- Discovery, design, and synthesis of drugs, including natural agents, chemical screens, and rational design
- Development of laboratory drugs into viable therapeutic agents for clinical use, including the evaluation of drug safety and efficacy, drug delivery, cost, and other practical considerations

Learn More: utsouthwestern.edu/grad-pharmacological-sciences
Seize a Chance to Get Started in Research – Now

You don’t have to be enrolled in the Graduate School of Biomedical Sciences to begin exploring a career in research. At UT Southwestern, we offer summer research opportunities to undergraduates in all biomedical life sciences.

Summer Undergraduate Research Fellowships

Summer Undergraduate Research Fellowship program (SURF): encompasses all biomedical sciences, including biochemistry, cancer biology, cell biology, molecular biology, immunology, microbiology, neuroscience, molecular physiology, genetics, and development. (utsouthwestern.edu/surf)

Quantitative and Physical Sciences SURF program (QP-SURF): includes research in biophysics and structural biology, computational and systems biology, biomedical engineering, and synthetic organic chemistry. (utsouthwestern.edu/qp-surf)

Summer Undergraduate Research Institute for the Study of Kidney Disease program (SURISKD): focuses on biomedical research with a special emphasis on kidney-related research, ranging from embryonic development and physiology to kidney cancer and imaging. (utsouthwestern.edu/suriskd)

SURF Cancer program: focuses on research experiences aimed at understanding the molecules, mechanisms, and pathways involved in the development of cancer. (utsouthwestern.edu/surf-cancer)

As a summer undergraduate research fellow at UTSW, you’ll work on an individual research project for 10 weeks under the supervision of a faculty member. Outside the lab, you’ll attend world-class lectures and presentations, produce a poster presentation for review by faculty, and have the opportunity to enjoy social activities in the Dallas/Fort Worth area.

Visit our web pages to learn more.

Take Advantage of an Abundance of Career-Development Resources

Graduate school isn’t the end of the line; in fact, in many ways, it’s just the beginning. At UT Southwestern, the Graduate School of Biomedical Sciences is committed to helping our students and postdoctoral appointees achieve their ultimate goal: a promising and successful career in science.

We have an Office of Graduate Career Development that provides resources and opportunities, including seminars, internships, workshops, and one-on-one advising appointments to help our students:

- Explore occupations and industries beyond academic research
- Identify and develop the practical skills required for a range of science careers

Earn a Competitive Stipend and Enjoy a Low Cost of Living

Graduate students at UT Southwestern earn a nationally competitive stipend of $34,500 annually. Other schools may offer more, but not many can match this: There are no state or city income taxes in Texas, meaning more of your earnings stay with you and your family.

The cost of living in Dallas is also lower than many other cities of comparable size and amenities.

2015 Cost of Living Index
(100 is the national average)

- Dallas: 96.1
- Chicago: 116.2
- Denver: 109.6
- Los Angeles: 140.3
- New York: 227.4
- Philadelphia: 119.5
- San Francisco: 176.4

Business is booming, too, with an unemployment rate below the national average, leaving lots of employment opportunities for family members during your time here.
Experience Life in One of America’s Most Vibrant Cities

About a quarter of all Texans live in the Dallas/Fort Worth area, drawn in part by the thriving blend of culture and commerce the Metroplex possesses. When it’s time to get to work, you’ll find DFW residents employed in a variety of industries, including transportation, defense manufacturing, financial services, telecommunications, information technology, electronics, and health care, to name just a few.

But in Dallas, there’s a lot more to life than work, including:

A Lively Arts Scene
Residents and visitors alike enjoy the city’s rapidly growing array of artistic possibilities. The 68-acre Dallas Arts District, located close to UT Southwestern, is the largest urban arts district in the country.

Sports Central
The Dallas/Fort Worth Metroplex is one of only eight U.S. metro areas with teams in all five major professional sports: the NFL’s Cowboys, NBA’s Mavericks, MLB’s Rangers, NHL’s Stars, and MLS’s FC Dallas all call the Dallas area home.

Abundant Parks & Recreation
You and your family will enjoy more than 23,000 acres of parks and nearly 62 miles of hiking, biking, and jogging trails. The new Klyde Warren Park is a 5.2-acre public park that joins the uptown arts district with the downtown business district.

Music & Entertainment
Dallas/Fort Worth boasts some of the best music and entertainment anywhere, from Deep Ellum — a haven for alternative music and eclectic shops and galleries — to the Morton H. Meyerson Symphony Center and Winspear Opera House. Fort Worth also offers a wealth of museums and performance venues that are just a short car or light rail trip away.

Shop (and Eat) ’Til You Drop
The Metroplex offers virtually unlimited shopping opportunities, from upscale malls such as the Galleria and NorthPark Center in Dallas to large outlet malls like Grapevine Mills, along with traditional malls, small boutiques, and specialty stores. Restaurants of all types abound in Dallas/Fort Worth as well, with the area offering more restaurants per person than New York.

Easy Access
Dallas/Fort Worth is a major transportation center and home to one of the world’s busiest airports, DFW International. DFW offers easy access to and from hundreds of destinations in the United States, Europe, Asia, Latin America, Australia, and the Middle East. Dallas Love Field airport, barely five minutes from campus, offers low-cost flights to many domestic destinations.

Downtown Dallas – just minutes from the UT Southwestern campus. The Dallas/Fort Worth Metroplex is a contemporary, exciting area with a diverse population.
You’ve Heard from Us.

Now It’s Your Turn.

How and when to apply

The UT Southwestern Graduate School’s Division of Basic Science has three distinct programs. You may apply to one, two, or all three of these programs with one application. Each program will make its own independent admission decision. Acceptance into one does not have any implication on acceptance into another. If you receive an invitation to interview from more than one program, all interviews will be conducted during one visit to UT Southwestern.

The Mechanisms of Disease and Translational Science training track is available to all applicants, regardless of the admissions path or program to which they are applying.

Program 1

Biological Sciences Umbrella Program – This program includes the following nine Ph.D. programs and two specialized supplemental curricula/tracks that can be combined with Ph.D. curricula:

> Biological Chemistry Ph.D.
> Cancer Biology Ph.D.
> Cell and Molecular Biology Ph.D.
> Genetics, Development, and Disease Ph.D.
> Immunology Ph.D.
> Integrative Biology Ph.D.
> Molecular Biophysics Ph.D.
> Molecular Microbiology Ph.D.
> Neuroscience Ph.D.
> Computational and Systems Biology emphasis
> Pharmacological Sciences emphasis

Program 2

Organic Chemistry Ph.D. Program

Program 3

Biomedical Engineering Ph.D. Program – This program includes the following four tracks:

> Biomaterials, Mechanics, and Tissue Engineering
> Biomedical and Molecular Imaging
> Molecular and Translational Nanomedicine
> Medical Physics

Application deadline: December 1

Apply online at utsouthwestern.edu/dbsapp

Applications are reviewed by an admissions committee composed of faculty members representing each of the participating programs.

Financial Assistance

All students in the Division of Basic Science receive a nationally competitive stipend. In addition, funds are provided to cover all tuition and fees. Multiple health insurance options are available for purchase by the student.

We welcome your interest in the UT Southwestern Graduate School of Biomedical Sciences – Division of Basic Science.

Want to know more? For additional information, contact any of the following people:

Nancy Street, Ph.D., Associate Dean and Diversity Officer
nancy.street@utsouthwestern.edu

Stuart Ravnik, Ph.D., Associate Dean
stuart.ravnik@utsouthwestern.edu

Lisa Gardner, Ph.D., Assistant Dean
lisa.gardner@utsouthwestern.edu

Deborah Evalds, Education Coordinator
deborah.evalds@utsouthwestern.edu

Or visit us online:
utsouthwestern.edu/graduateschool